plt.scatter(data.iloc[:, 2], data.iloc[:, 1], c=kmeans_labels)

时间: 2024-01-15 15:04:12 浏览: 34
这是一个使用matplotlib库中scatter函数进行散点图绘制的代码片段。其中,"data"是一个pandas DataFrame,".iloc[:, 2]"选取了所有行的第三列作为x轴数据,".iloc[:, 1]"选取了所有行的第二列作为y轴数据,"c=kmeans_labels"表示将k-means聚类算法的标签作为颜色参数来区分不同的数据点。
相关问题

import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.cluster import KMeans from scipy.spatial import Voronoi, voronoi_plot_2d # 生成示例数据 data = df.iloc[:,1:15] # 标准化处理 scaler = StandardScaler() data_scaled = scaler.fit_transform(data) # 主成分分析 pca = PCA(n_components=5) data_pca = pca.fit_transform(data_scaled) # 聚类分析 kmeans = KMeans(n_clusters=3) kmeans.fit(data_pca) labels = kmeans.labels_ centers = kmeans.cluster_centers_ # 绘制Voronoi图 vor = Voronoi(centers) voronoi_plot_2d(vor) # 绘制样本点 plt.scatter(data_pca[:, 0], data_pca[:, 1], c=labels) # 设置坐标轴标签和标题 plt.xlabel('PC1') plt.ylabel('PC2') plt.title('Voronoi Diagram') # 显示图形 plt.show()

您的代码看起来几乎是正确的,但有一点需要注意。Voronoi图是在原始数据空间中绘制的,而不是在主成分空间中。因此,在绘制Voronoi图之前,我们需要将主成分投影回原始数据空间。以下是修改后的代码: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.cluster import KMeans from scipy.spatial import Voronoi, voronoi_plot_2d # 生成示例数据 data = df.iloc[:, 1:15] # 标准化处理 scaler = StandardScaler() data_scaled = scaler.fit_transform(data) # 主成分分析 pca = PCA(n_components=5) data_pca = pca.fit_transform(data_scaled) # 聚类分析 kmeans = KMeans(n_clusters=3) kmeans.fit(data_pca) labels = kmeans.labels_ centers = kmeans.cluster_centers_ # 将主成分投影回原始数据空间 data_projected = pca.inverse_transform(data_pca) # 绘制Voronoi图 vor = Voronoi(centers) voronoi_plot_2d(vor) # 绘制样本点 plt.scatter(data_projected[:, 0], data_projected[:, 1], c=labels) # 设置坐标轴标签和标题 plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt.title('Voronoi Diagram') # 显示图形 plt.show() ``` 请确保在代码中替换`df.iloc[:, 1:15]`为您实际的数据。这段代码将绘制投影回原始数据空间后的样本点,并在Voronoi图上显示聚类结果。

逐句注释import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score import pandas as pd data = pd.read_csv('xigua.csv') # 加载数据 print(data) print(data.shape) X = data.iloc[: ,1:3].values print(X) print(X.shape) plt.scatter(X[:, 0], X[:, 1], c = "red", marker = 'o', label = 'None') plt.ylabel('Sugar content') plt.xlabel('density') plt.legend(loc = 2) plt.show() #运用数学方法计算k的取值 score = [] for i in range(10): model = KMeans(n_clusters = i + 2) model.fit(X[:, 1:3]) #计算轮廓系数,系数取值范围[-1,1],越接近1的,k的值越好 score.append(silhouette_score(X[:, 0:2], model.labels_, metric = 'euclidean')) plt.figure(figsize = (5, 4)) plt.plot(range(2, 12, 1), score) plt.show() #n_clusters表示k的取值,也就是聚成簇的数量 #fit()函数:做的就是模型训练 kmeans = KMeans(n_clusters = 3, random_state = 0, ).fit(X[:, 1:3]) label_pred = kmeans.labels_#获取聚类标签 print(label_pred) centroids = kmeans.cluster_centers_ #获取聚类簇心 print(centroids) #绘制结果 x0 = X[label_pred == 0] x1 = X[label_pred == 1] plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker = 'o', label = 'label0') plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker = '*', label = 'label1') plt.ylabel('Sugar content') plt.xlabel('density') plt.legend(loc = 2) plt.show()

这份代码主要是对西瓜数据集进行聚类分析,下面是逐行的注释: ``` import matplotlib.pyplot as plt # 导入绘图库 from sklearn.cluster import KMeans # 导入kmeans聚类算法 from sklearn.metrics import silhouette_score # 导入轮廓系数评价指标 import pandas as pd # 导入数据处理库 data = pd.read_csv('xigua.csv') # 加载数据 print(data) # 打印数据 print(data.shape) # 打印数据的形状 X = data.iloc[:, 1:3].values # 取第2列和第3列作为特征 print(X) # 打印特征 print(X.shape) # 打印特征的形状 plt.scatter(X[:, 0], X[:, 1], c="red", marker='o', label='None') # 绘制散点图 plt.ylabel('Sugar content') # y轴标签 plt.xlabel('density') # x轴标签 plt.legend(loc=2) # 图例位置 plt.show() # 显示图像 score = [] # 初始化轮廓系数列表 for i in range(10): # 循环计算轮廓系数 model = KMeans(n_clusters=i + 2) # 聚类模型 model.fit(X[:, 1:3]) # 训练模型 # 计算轮廓系数,系数取值范围[-1,1],越接近1的,k的值越好 score.append(silhouette_score(X[:, 0:2], model.labels_, metric='euclidean')) plt.figure(figsize=(5, 4)) # 创建图像 plt.plot(range(2, 12, 1), score) # 绘制轮廓系数图像 plt.show() # 显示图像 kmeans = KMeans(n_clusters=3, random_state=0).fit(X[:, 1:3]) # 聚类模型 label_pred = kmeans.labels_ # 获取聚类标签 print(label_pred) # 打印聚类标签 centroids = kmeans.cluster_centers_ # 获取聚类簇心 print(centroids) # 打印聚类簇心 x0 = X[label_pred == 0] # 获取第一类样本 x1 = X[label_pred == 1] # 获取第二类样本 plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label0') # 绘制第一类样本的散点图 plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label1') # 绘制第二类样本的散点图 plt.ylabel('Sugar content') # y轴标签 plt.xlabel('density') # x轴标签 plt.legend(loc=2) # 图例位置 plt.show() # 显示图像 ``` 这段代码的目的是对西瓜数据集进行聚类分析,首先通过读取数据集获取特征,然后绘制散点图观察数据的分布情况,接着通过计算轮廓系数来确定最优的聚类簇数,再利用KMeans算法进行聚类分析,并绘制聚类结果的散点图。

相关推荐

在下面代码中修改添加一个可视化图,用来画出r经过t_sne之后前15行和15到30行数据的可视化图。import pandas as pd from sklearn import cluster from sklearn import metrics import matplotlib.pyplot as plt from sklearn.manifold import TSNE from sklearn.decomposition import PCA def k_means(data_set, output_file, png_file, png_file1, t_labels, score_file, set_name): model = cluster.KMeans(n_clusters=7, max_iter=1000, init="k-means++") model.fit(data_set) # print(list(model.labels_)) p_labels = list(model.labels_) r = pd.concat([data_set, pd.Series(model.labels_, index=data_set.index)], axis=1) r.columns = list(data_set.columns) + [u'聚类类别'] print(r) # r.to_excel(output_file) with open(score_file, "a") as sf: sf.write("By k-means, the f-m_score of " + set_name + " is: " + str(metrics.fowlkes_mallows_score(t_labels, p_labels))+"\n") sf.write("By k-means, the rand_score of " + set_name + " is: " + str(metrics.adjusted_rand_score(t_labels, p_labels))+"\n") '''pca = PCA(n_components=2) pca.fit(data_set) pca_result = pca.transform(data_set) t_sne = pd.DataFrame(pca_result, index=data_set.index)''' t_sne = TSNE() t_sne.fit(data_set) t_sne = pd.DataFrame(t_sne.embedding_, index=data_set.index) plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False dd = t_sne[r[u'聚类类别'] == 0] plt.plot(dd[0], dd[1], 'r.') dd = t_sne[r[u'聚类类别'] == 1] plt.plot(dd[0], dd[1], 'go') dd = t_sne[r[u'聚类类别'] == 2] plt.plot(dd[0], dd[1], 'b*') dd = t_sne[r[u'聚类类别'] == 3] plt.plot(dd[0], dd[1], 'o') dd = t_sne[r[u'聚类类别'] == 4] plt.plot(dd[0], dd[1], 'm.') dd = t_sne[r[u'聚类类别'] == 5] plt.plot(dd[0], dd[1], 'co') dd = t_sne[r[u'聚类类别'] == 6] plt.plot(dd[0], dd[1], 'y*') plt.savefig(png_file) plt.clf() '''plt.scatter(data_set.iloc[:, 0], data_set.iloc[:, 1], c=model.labels_) plt.savefig(png_file) plt.clf()''' frog_data = pd.read_csv("D:/PyCharmPython/pythonProject/mfcc3.csv") tLabel = [] for family in frog_data['name']: if family == "A": tLabel.append(0) elif family == "B": tLabel.append(1) elif family == "C": tLabel.append(2) elif family == "D": tLabel.append(3) elif family == "E": tLabel.append(4) elif family == "F": tLabel.append(5) elif family == "G": tLabel.append(6) scoreFile = "D:/PyCharmPython/pythonProject/scoreOfClustering.txt" first_set = frog_data.iloc[:, 1:1327] k_means(first_set, "D:/PyCharmPython/pythonProject/kMeansSet_1.xlsx", "D:/PyCharmPython/pythonProject/kMeansSet_2.png", "D:/PyCharmPython/pythonProject/kMeansSet_2_1.png", tLabel, scoreFile, "Set_1")

最新推荐

recommend-type

Scrapy-1.8.2.tar.gz

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

search-log.zip

搜索记录,包括时间、搜索关键词等,用于PySpark案例练习
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

导入numpy库,创建两个包含9个随机数的3*3的矩阵,将两个矩阵分别打印出来,计算两个数组的点积并打印出来。(random.randn()、dot()函数)

可以的,以下是代码实现: ```python import numpy as np # 创建两个包含9个随机数的3*3的矩阵 matrix1 = np.random.randn(3, 3) matrix2 = np.random.randn(3, 3) # 打印两个矩阵 print("Matrix 1:\n", matrix1) print("Matrix 2:\n", matrix2) # 计算两个数组的点积并打印出来 dot_product = np.dot(matrix1, matrix2) print("Dot product:\n", dot_product) ``` 希望