D-LinkNet的一个优势特点是有Dense Feature Linking,请你帮我在segnet网络结构的基础上,引入Dense Feature Linking,写出完整的代码
时间: 2023-12-14 18:39:14 浏览: 204
好的,我们可以在SegNet的Decoder部分引入Dense Feature Linking。具体来说,我们可以在Decoder的每一层的输出上,都接入一个1x1的卷积层来产生额外的特征图。然后,将这些额外的特征图与Encoder对应层的输出进行concatenate操作,得到Dense Feature Linking后的特征图。最后,再通过卷积层进行特征融合并得到最终的分割结果。
以下是参考代码:
```python
import torch
import torch.nn as nn
class SegNet(nn.Module):
def __init__(self, in_channels, out_channels):
super(SegNet, self).__init__()
# Encoder部分
self.encoder = nn.Sequential(
nn.Conv2d(in_channels, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.Conv2d(64, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(128, 128, kernel_size=3, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(128, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(256, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.Conv2d(512, 512, kernel_size=3, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
# Decoder部分
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 512, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(512, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 256, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(256, 128, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.ConvTranspose2d(128, 64, kernel_size=3, stride=2, padding=1, output_padding=1),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
# Dense Feature Linking
self.linker_1 = nn.Conv2d(512, 256, kernel_size=1)
self.linker_2 = nn.Conv2d(256, 128, kernel_size=1)
self.linker_3 = nn.Conv2d(128, 64, kernel_size=1)
# 分类器
self.classifier = nn.Conv2d(64, out_channels, kernel_size=1)
def forward(self, x):
# Encoder部分
enc_outputs = []
enc_outputs.append(x)
x = self.encoder[0:4](x)
enc_outputs.append(x)
x = self.encoder[4:9](x)
enc_outputs.append(x)
x = self.encoder[9:16](x)
enc_outputs.append(x)
x = self.encoder[16:23](x)
enc_outputs.append(x)
x = self.encoder[23:](x)
enc_outputs.append(x)
# Decoder部分
x = self.decoder[0](x)
x = torch.cat((x, enc_outputs[5], self.linker_1(enc_outputs[5])), dim=1)
x = self.decoder[1:4](x)
x = torch.cat((x, enc_outputs[4], self.linker_2(enc_outputs[4])), dim=1)
x = self.decoder[4:7](x)
x = torch.cat((x, enc_outputs[3], self.linker_3(enc_outputs[3])), dim=1)
x = self.decoder[7:](x)
# 分类器
x = self.classifier(x)
return x
```
阅读全文