训练VGG16模型的具体步骤
时间: 2023-06-21 12:20:40 浏览: 93
训练VGG16模型的具体步骤如下:
1. 导入VGG16模型
```python
from keras.applications.vgg16 import VGG16
model = VGG16(weights='imagenet', include_top=False)
```
2. 冻结VGG16模型的卷积层
```python
for layer in model.layers:
layer.trainable = False
```
3. 自定义全连接层
```python
x = model.output
x = Flatten()(x)
x = Dense(1024, activation='relu')(x)
x = Dropout(0.5)(x)
predictions = Dense(2, activation='softmax')(x)
```
4. 构建新的模型
```python
from keras.models import Model
new_model = Model(inputs=model.input, outputs=predictions)
```
5. 编译新的模型
```python
new_model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```
6. 加载数据集并进行预处理
```python
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical')
validation_generator = test_datagen.flow_from_directory(validation_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical')
```
7. 训练模型
```python
from keras.callbacks import ModelCheckpoint
checkpoint = ModelCheckpoint(filepath='best_model.h5', monitor='val_acc', save_best_only=True)
history = new_model.fit_generator(train_generator, steps_per_epoch=nb_train_samples // batch_size, epochs=epochs, validation_data=validation_generator, validation_steps=nb_validation_samples // batch_size, callbacks=[checkpoint])
```
8. 可视化训练过程
```python
import matplotlib.pyplot as plt
plt.plot(history.history['acc'])
plt.plot(history.history['val_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()
```
阅读全文