“人工智能生成对抗网络”的代码举例
时间: 2023-06-11 10:09:42 浏览: 103
以下是一个简单的GAN代码示例,该代码使用PyTorch框架实现:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.autograd import Variable
# 定义生成器网络
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.fc = nn.Sequential(
nn.Linear(100, 128),
nn.ReLU(),
nn.Linear(128, 784),
nn.Tanh()
)
def forward(self, x):
x = self.fc(x)
return x
# 定义判别器网络
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
self.fc = nn.Sequential(
nn.Linear(784, 128),
nn.ReLU(),
nn.Linear(128, 1),
nn.Sigmoid()
)
def forward(self, x):
x = self.fc(x)
return x
# 训练过程
def train():
batch_size = 100
learning_rate = 0.0002
num_epochs = 200
# 加载MNIST数据集
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean=(0.5,), std=(0.5,))])
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
# 定义生成器和判别器
G = Generator()
D = Discriminator()
# 定义损失函数和优化器
criterion = nn.BCELoss()
G_optimizer = optim.Adam(G.parameters(), lr=learning_rate)
D_optimizer = optim.Adam(D.parameters(), lr=learning_rate)
# 开始训练
for epoch in range(num_epochs):
for i, (images, _) in enumerate(train_loader):
# 训练判别器
real_images = Variable(images.view(images.size(0), -1))
real_labels = Variable(torch.ones(images.size(0), 1))
fake_images = Variable(torch.randn(images.size(0), 100))
fake_labels = Variable(torch.zeros(images.size(0), 1))
D_optimizer.zero_grad()
real_outputs = D(real_images)
real_loss = criterion(real_outputs, real_labels)
fake_images = G(fake_images)
fake_outputs = D(fake_images)
fake_loss = criterion(fake_outputs, fake_labels)
D_loss = real_loss + fake_loss
D_loss.backward()
D_optimizer.step()
# 训练生成器
fake_images = Variable(torch.randn(images.size(0), 100))
fake_labels = Variable(torch.ones(images.size(0), 1))
G_optimizer.zero_grad()
generated_images = G(fake_images)
outputs = D(generated_images)
G_loss = criterion(outputs, fake_labels)
G_loss.backward()
G_optimizer.step()
# 输出损失
print('Epoch [{}/{}], D_loss: {:.4f}, G_loss: {:.4f}'.format(epoch+1, num_epochs, D_loss.data[0], G_loss.data[0]))
if __name__ == '__main__':
train()
```
这个GAN程序演示了如何使用神经网络生成手写数字图像。在训练过程中,生成器的目标是生成看起来像真实图像的图像,而判别器的目标是将真实图像与生成的图像区分开来。这个GAN程序可以在MNIST数据集上进行训练,生成的图像可以与真实的手写数字图像相比较。
阅读全文