深度强化学习代码gpt
时间: 2023-08-25 15:50:47 浏览: 119
深度强化学习代码(Deep Reinforcement Learning code)可以使用各种框架和库来实现,其中比较常用的是TensorFlow和PyTorch。以下是一个使用PyTorch实现的深度强化学习代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
import gym
# 定义强化学习模型
class DQN(nn.Module):
def __init__(self, input_size, output_size):
super(DQN, self).__init__()
self.fc1 = nn.Linear(input_size, 64)
self.fc2 = nn.Linear(64, 64)
self.fc3 = nn.Linear(64, output_size)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 实例化环境和模型
env = gym.make('CartPole-v1')
input_size = env.observation_space.shape[0]
output_size = env.action_space.n
model = DQN(input_size, output_size)
# 定义优化器和损失函数
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.MSELoss()
# 训练模型
num_episodes = 1000
for episode in range(num_episodes):
state = env.reset()
done = False
total_reward = 0
while not done:
# 选择动作
q_values = model(torch.tensor(state, dtype=torch.float32))
action = torch.argmax(q_values).item()
# 执行动作并观察环境反馈
next_state, reward, done, _ = env.step(action)
# 计算TD目标值
q_values_next = model(torch.tensor(next_state, dtype=torch.float32))
q_value_target = reward + 0.99 * torch.max(q_values_next).item()
# 计算损失并更新模型
q_value_pred = q_values[action]
loss = criterion(q_value_pred, torch.tensor(q_value_target, dtype=torch.float32))
optimizer.zero_grad()
loss.backward()
optimizer.step()
state = next_state
total_reward += reward
if episode % 10 == 0:
print(f"Episode {episode}: Total Reward = {total_reward}")
# 使用训练好的模型进行测试
state = env.reset()
done = False
total_reward = 0
while not done:
q_values = model(torch.tensor(state, dtype=torch.float32))
action = torch.argmax(q_values).item()
next_state, reward, done, _ = env.step(action)
state = next_state
total_reward += reward
print(f"Test Total Reward = {total_reward}")
```
这段代码使用了PyTorch框架,实现了一个基于DQN(Deep Q-Network)的强化学习模型,使用CartPole环境进行训练和测试。在训练过程中,模型通过与环境交互获取状态、选择动作、观察环境反馈,然后根据反馈更新模型参数以提高性能。最后,使用训练好的模型在环境中进行测试并输出总奖励值。
请注意,这只是一个简单的示例代码,实际的深度强化学习任务可能需要更复杂的模型和算法。你可以根据具体的问题和需求进行相应的修改和扩展。
阅读全文