python实现吃豆人AI代码
时间: 2023-08-06 07:04:19 浏览: 156
以下是一个使用Q-learning算法实现吃豆人AI的Python代码示例:
```python
import random
class PacmanAI:
def __init__(self):
self.learning_rate = 0.8
self.discount_rate = 0.95
self.epsilon = 0.2
self.q_table = {}
def get_state(self, game_state):
# 将游戏状态转化为一个向量
state = []
state.append(game_state['pacman_position'])
for ghost in game_state['ghost_positions']:
state.append(ghost)
for bean in game_state['bean_positions']:
state.append(bean)
return tuple(state)
def get_action(self, game_state):
state = self.get_state(game_state)
if random.uniform(0, 1) < self.epsilon:
# 探索
return random.choice(game_state['legal_actions'])
else:
# 选择最佳动作
if state not in self.q_table:
self.q_table[state] = {}
for action in game_state['legal_actions']:
self.q_table[state][action] = 0
return max(self.q_table[state], key=self.q_table[state].get)
def update_q_table(self, state, action, reward, next_state):
if state not in self.q_table:
self.q_table[state] = {}
for a in legal_actions:
self.q_table[state][a] = 0
if next_state not in self.q_table:
self.q_table[next_state] = {}
for a in legal_actions:
self.q_table[next_state][a] = 0
old_value = self.q_table[state][action]
next_max = max(self.q_table[next_state].values())
new_value = (1 - self.learning_rate) * old_value + self.learning_rate * (reward + self.discount_rate * next_max)
self.q_table[state][action] = new_value
```
在训练过程中,可以使用以下代码来更新Q-table:
```python
state = agent.get_state(game_state)
action = agent.get_action(game_state)
next_state, reward, done = game.next_state(game_state, action)
next_state = agent.get_state(next_state)
agent.update_q_table(state, action, reward, next_state)
```
在测试过程中,可以使用以下代码来选择动作:
```python
action = agent.get_action(game_state)
```
这只是一个简单的实现,需要根据具体情况进行调整和优化,比如添加更多的特征、增加训练次数等等。
阅读全文