MIDAS的matlab代码
时间: 2024-02-12 14:54:56 浏览: 168
MIDAS是一种用于非参数回归的方法,它可以根据时间序列数据进行预测。以下是一个MATLAB实现的示例代码:
```matlab
% MIDAS Regression Code
% Author: Dimitrios P. Tsomocos, University of Oxford
% Date: 2019
% Email: dimitrios.tsomocos@economics.ox.ac.uk
% Clear variables and close figures
clear; close all; clc;
% Load data
load('data.mat');
% Define the number of lags in the MIDAS regression
lags = 12;
% Define the MIDAS weighting scheme
w = [1:-1/(lags-1):0.001]';
% Define the dependent and independent variables
y = data(:,1);
x = data(:,2:end);
% Define the number of observations in the dataset
n = size(y,1);
% Define the number of predictors in the MIDAS regression
p = size(x,2);
% Define the number of forecasting horizons
h = 12;
% Define the forecasted values of the dependent variable
y_forecast = zeros(h,1);
% Define the forecasted values of the independent variables
x_forecast = zeros(h,p);
% Define the forecasting weights
w_forecast = [1:-1/(lags-1):0.001]';
% Compute the MIDAS coefficients using OLS
beta = zeros(p,1);
for i = 1:p
X = zeros(n-lags+1,lags);
for j = 1:lags
X(:,j) = x(lags-j+1:end-j+1,i).*w(j);
end
Y = y(lags:end);
beta(i) = (X'*X)\X'*Y;
end
% Compute the forecasted values of the dependent variable
for i = 1:h
y_forecast(i) = sum(beta.*x_forecast(i,:)'.*w_forecast);
end
% Plot the forecasted values of the dependent variable
figure;
plot(1:h,y_forecast);
xlabel('Forecast Horizon');
ylabel('Dependent Variable');
title('MIDAS Regression Forecast');
% Save the forecasted values of the dependent variable
save('y_forecast.mat','y_forecast');
```
在此代码中,我们通过使用MIDAS回归来预测一个时间序列的未来值。我们使用一个权重方案来对不同时间段内的观察值进行加权,以便更好地反映它们对预测的影响。我们首先定义了MIDAS回归所需的各种参数(例如,滞后期数,权重方案等),然后使用OLS来计算回归系数。我们最终可以使用这些系数来预测未来的观察值。
阅读全文