delta = torch.zeros_like(images).uniform_(-epsilon, epsilon) delta = torch.clamp(delta, min=-epsilon, max=epsilon)什么意思
时间: 2024-05-18 19:12:29 浏览: 166
这段代码使用 PyTorch 库中的函数来创建一个和 images 张量大小相同的全零张量 delta,并且使用 uniform_ 函数将 delta 中的每个元素设置为从 [-epsilon, epsilon] 区间内随机抽样得到的值。最后,clamp 函数将 delta 中的每个元素限制在 [-epsilon, epsilon] 区间内,以确保 delta 的值在一定范围内。这段代码可能用于对图像进行一些扰动,以增强模型的鲁棒性或对抗性攻击等任务。
相关问题
生成PGD算法delta = pgd_attack(model, images, labels, epsilon=0.031, alpha=0.008, num_iter=10)的代码
以下是生成PGD算法delta的代码示例:
```python
import torch
import torch.nn.functional as F
def pgd_attack(model, images, labels, epsilon=0.031, alpha=0.008, num_iter=10):
"""
PGD攻击函数,返回添加扰动后的图像delta
:param model: 要攻击的模型
:param images: 原始图像
:param labels: 原始标签
:param epsilon: 扰动大小
:param alpha: 每次迭代扰动大小
:param num_iter: 迭代次数
:return: 添加扰动后的图像delta
"""
delta = torch.zeros_like(images).uniform_(-epsilon, epsilon)
delta = torch.clamp(delta, min=-epsilon, max=epsilon)
for t in range(num_iter):
delta.requires_grad = True
outputs = model(images + delta)
loss = F.cross_entropy(outputs, labels)
loss.backward()
grad = delta.grad.detach()
delta.data = torch.clamp(delta + alpha * torch.sign(grad), min=-epsilon, max=epsilon)
delta.data = torch.max(torch.min(1 - images, delta.data), 0 - images)
delta.data = torch.clamp(delta, min=-epsilon, max=epsilon).detach_()
delta.grad.zero_()
return delta
```
该代码中,model是要攻击的模型,images是原始图像,labels是原始标签,epsilon是扰动大小,alpha是每次迭代扰动大小,num_iter是迭代次数。在攻击过程中,我们首先生成一个与输入图像相同大小的扰动delta,将其限制在[-epsilon, epsilon]的区间内。然后使用PGD算法进行迭代攻击,每次迭代都计算模型的输出和相应的损失,然后使用反向传播更新扰动delta。最后将delta限制在[-epsilon, epsilon]的区间内,并返回添加扰动后的图像delta。
阅读全文
相关推荐














