tfidf = tfidftransformer.fit_transform(vectorizer.fit_transform(review_train))
时间: 2024-01-17 20:03:30 浏览: 131
这行代码使用了 scikit-learn 中的 TfidfTransformer 和 CountVectorizer 对文本进行向量化表示。具体来说,CountVectorizer 会将文本转换为词频矩阵,每行表示一篇文本,每列表示一个单词,矩阵中的值表示该单词在该篇文本中出现的次数。而 TfidfTransformer 则会对词频矩阵进行 TF-IDF 转换,即将词频矩阵中的每个元素除以该单词在所有文本中出现的文档频率。这样做可以降低常见但不重要的词语在文本分类等任务中的权重,提高重要但不常见的词语的权重。最终得到的 tfidf 矩阵可以作为机器学习算法的输入特征。
相关问题
# 用于训练的评论 review_train = [' '.join(review_to_text(review)) for review in train_review_list] # 对于训练评论对应的恶意评论/正常评论 sentiment_train = train_sentiment_list # 用于测试的评论 review_test = [' '.join(review_to_text(review)) for review in test_review_list] # 对于测试评论对应的恶意评论/正常评论 sentiment_test = test_sentiment_list vectorizer = CountVectorizer(max_df=0.8, min_df=3) tfidftransformer = TfidfTransformer() # 先转换成词频矩阵,再计算TFIDF值 tfidf = tfidftransformer.fit_transform(vectorizer.fit_transform(review_train)) # 朴素贝叶斯中的多项式分类器 clf = MultinomialNB().fit(tfidf, sentiment_train)
这段代码看起来是用朴素贝叶斯模型来对评论进行分类,其中用到了词频矩阵和TF-IDF值来作为特征,同时使用了CountVectorizer和TfidfTransformer来进行预处理。训练集和测试集的评论都被转换成了词频矩阵和TF-IDF值,用MultinomialNB()来训练分类器,最后可以用该分类器对新的评论进行分类。
报错ValueError: np.nan is an invalid document, expected byte or unicode string. 怎么修改import pandas as pd from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 读取电影评论数据集 data = pd.read_csv(r'D:\shujukexue\review_data.csv', encoding='gbk') x = v.fit_transform(df['eview'].apply(lambda x: np.str_(x))) # 分割数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(data['review'], data['sentiment'], test_size=0.2, random_state=42) # 创建CountVectorizer对象进行词频统计和向量化 count_vectorizer = CountVectorizer() X_train_count = count_vectorizer.fit_transform(X_train) X_test_count = count_vectorizer.transform(X_test) # 创建TfidfVectorizer对象进行TF-IDF计算和向量化 tfidf_vectorizer = TfidfVectorizer() X_train_tfidf = tfidf_vectorizer.fit_transform(X_train) X_test_tfidf = tfidf_vectorizer.transform(X_test) # 创建逻辑回归分类器并在CountVectorizer上进行训练和预测 classifier_count = LogisticRegression() classifier_count.fit(X_train_count, y_train) y_pred_count = classifier_count.predict(X_test_count) accuracy_count = accuracy_score(y_test, y_pred_count) print("Accuracy using CountVectorizer:", accuracy_count) # 创建逻辑回归分类器并在TfidfVectorizer上进行训练和预测 classifier_tfidf = LogisticRegression() classifier_tfidf.fit(X_train_tfidf, y_train) y_pred_tfidf = classifier_tfidf.predict(X_test_tfidf) accuracy_tfidf = accuracy_score(y_test, y_pred_tfidf) print("Accuracy using TfidfVectorizer:", accuracy_tfidf)
在代码中,变量名应该是 'data' 而不是 'df',所以在使用 CountVectorizer 进行向量化的时候,应该使用 'data' 而不是 'df',修改代码如下所示:
```
import pandas as pd
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
# 读取电影评论数据集
data = pd.read_csv(r'D:\shujukexue\review_data.csv', encoding='gbk')
# 分割数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(data['review'], data['sentiment'], test_size=0.2, random_state=42)
# 创建CountVectorizer对象进行词频统计和向量化
count_vectorizer = CountVectorizer()
X_train_count = count_vectorizer.fit_transform(X_train)
X_test_count = count_vectorizer.transform(X_test)
# 创建TfidfVectorizer对象进行TF-IDF计算和向量化
tfidf_vectorizer = TfidfVectorizer()
X_train_tfidf = tfidf_vectorizer.fit_transform(X_train)
X_test_tfidf = tfidf_vectorizer.transform(X_test)
# 创建逻辑回归分类器并在CountVectorizer上进行训练和预测
classifier_count = LogisticRegression()
classifier_count.fit(X_train_count, y_train)
y_pred_count = classifier_count.predict(X_test_count)
accuracy_count = accuracy_score(y_test, y_pred_count)
print("Accuracy using CountVectorizer:", accuracy_count)
# 创建逻辑回归分类器并在TfidfVectorizer上进行训练和预测
classifier_tfidf = LogisticRegression()
classifier_tfidf.fit(X_train_tfidf, y_train)
y_pred_tfidf = classifier_tfidf.predict(X_test_tfidf)
accuracy_tfidf = accuracy_score(y_test, y_pred_tfidf)
print("Accuracy using TfidfVectorizer:", accuracy_tfidf)
```
阅读全文