global anss; ansss=0; if strcmp(get(handles.edit1,'String'),'123456') && strcmp(get(handles.edit2,'String'),'654321') ansss=anss end if ansss==0 set(handles.text10, 'String', '消极情绪'); elseif ansss==1 set(handles.text10, 'String', '积极情绪'); end,但结果为ansss = []
时间: 2023-06-13 12:08:33 浏览: 60
根据你提供的代码,我可以看出问题出在你的代码中。具体来说,你在if语句中给变量anss赋值了0,但是在后面没有对anss进行任何操作,因此anss的值仍然为空数组。因此,当你在if语句后面使用变量ansss时,它的值仍然为空数组,导致你得到的结果为ansss = []。
你需要检查一下你的代码逻辑,确保你对变量anss进行了正确的操作,并且在if语句中给变量anss赋值后,确保你使用的变量名是正确的。
相关问题
%data = randn(1000,16); %label = randi([0,1],1000,1); % data_trainnn_struct=load("data_trainn.mat"); label_trainnn_struct=load("label_trainn.mat"); data_trainnn=data_trainnn_struct.data; label_trainnn=label_trainnn_struct.label; % 数据预处理 data = zscore(data_trainnn); % 标准化数据 label = categorical(label_trainnn); % 标签划分为分类变量类型 % 进行数据集的划分 cv = cvpartition(length(label_trainnn), 'HoldOut', 0.3); idxTrain = training(cv); idxTest = test(cv); trainData = data(idxTrain,:); trainLabel = label(idxTrain); testData = data(idxTest,:); testLabel = label(idxTest); % 训练分类器 mdl = fitcecoc(trainData, trainLabel); % 预测测试集 predLabel = predict(mdl, testData); % 计算准确率 accuracy = sum(predLabel == testLabel)/numel(testLabel); disp(['Accuracy: ', num2str(accuracy)]); newData = data_filtered'; %代入滤波数据 % 对未知的样本进行数据预处理 newData = zscore(newData); % 训练完毕的分类器 predLabel = predict(mdl, newData); predLabels = double(predLabel); anss=0; %划分标准 avg = mean(predLabels); if abs(avg - 0.5) < 1 anss=1; elseif abs(avg) >= 1.5 anss=0; end帮我把这段代码转成python语言
import scipy.io as sio
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import LinearSVC
# 加载mat文件并获取数据
data_trainnn = sio.loadmat('data_trainn.mat')['data']
label_trainnn = sio.loadmat('label_trainn.mat')['label']
# 数据预处理
data = StandardScaler().fit_transform(data_trainnn)
label = np.squeeze(label_trainnn)
# 进行数据集的划分
X_train, X_test, y_train, y_test = train_test_split(
data, label, test_size=0.3, random_state=42)
# 训练分类器
clf = OneVsRestClassifier(LinearSVC(random_state=42)).fit(X_train, y_train)
# 预测测试集
y_pred = clf.predict(X_test)
# 计算准确率
accuracy = np.sum(y_pred == y_test) / len(y_test)
print('Accuracy: {}'.format(accuracy))
# 对未知样本进行数据预处理
newData = np.transpose(data_filtered)
# 数据预处理
newData = StandardScaler().fit_transform(newData)
# 预测未知样本的类别
predLabel = clf.predict(newData)
predLabels = predLabel.astype(np.float)
# 划分标准
avg = np.mean(predLabels)
if abs(avg - 0.5) < 1:
anss = 1
elif abs(avg) >= 1.5:
anss = 0
可以帮我把以下代码转成python语言吗:%data = randn(1000,16); %label = randi([0,1],1000,1); % data_trainnn_struct=load("data_trainn.mat"); label_trainnn_struct=load("label_trainn.mat"); data_trainnn=data_trainnn_struct.data; label_trainnn=label_trainnn_struct.label; % 数据预处理 data = zscore(data_trainnn); % 标准化数据 label = categorical(label_trainnn); % 标签划分为分类变量类型 % 进行数据集的划分 cv = cvpartition(length(label_trainnn), 'HoldOut', 0.3); idxTrain = training(cv); idxTest = test(cv); trainData = data(idxTrain,:); trainLabel = label(idxTrain); testData = data(idxTest,:); testLabel = label(idxTest); % 训练分类器 mdl = fitcecoc(trainData, trainLabel); % 预测测试集 predLabel = predict(mdl, testData); % 计算准确率 accuracy = sum(predLabel == testLabel)/numel(testLabel); disp(['Accuracy: ', num2str(accuracy)]); newData = data_filtered'; %代入滤波数据 % 对未知的样本进行数据预处理 newData = zscore(newData); % 训练完毕的分类器 predLabel = predict(mdl, newData); predLabels = double(predLabel); anss=0; %划分标准 avg = mean(predLabels); if abs(avg - 0.5) < 1 anss=1; elseif abs(avg) >= 1.5 anss=0; end
以下是转换后的 Python 代码:
```python
import numpy as np
from scipy.io import loadmat
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
from sklearn.svm import SVC
# 加载数据和标签
data = np.random.randn(1000, 16)
label = np.random.randint(2, size=(1000,))
data_trainnn_struct = loadmat('data_trainn.mat')
label_trainnn_struct = loadmat('label_trainn.mat')
data_trainnn = data_trainnn_struct['data']
label_trainnn = label_trainnn_struct['label']
# 数据预处理
scaler = StandardScaler()
data = scaler.fit_transform(data_trainnn)
label = label_trainnn.astype('category')
# 进行数据集的划分
train_data, test_data, train_label, test_label = train_test_split(
data, label, test_size=0.3, random_state=42)
# 训练分类器
clf = SVC(decision_function_shape='ovo')
clf.fit(train_data, train_label)
# 预测测试集
pred_label = clf.predict(test_data)
# 计算准确率
accuracy = accuracy_score(test_label, pred_label)
print('Accuracy:', accuracy)
# 对未知的样本进行数据预处理
new_data = data_filtered.T
# 数据预处理
new_data = scaler.transform(new_data)
# 预测未知样本
pred_label = clf.predict(new_data)
pred_labels = pred_label.astype(int)
# 划分标准
avg = pred_labels.mean()
if abs(avg - 0.5) < 1:
anss = 1
elif abs(avg) >= 1.5:
anss = 0
```
阅读全文