优化这段代码,当模型预测的置信度小于0.7时,不显示预测结果def show_camera(video_label,cap,model): width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) stat_time = time.time() ret, frame = cap.read() if ret: current_time = datetime.datetime.now().strftime(('%Y-%m-%d %H:%M:%S')) cv2.putText(frame,current_time,(width-500,30),cv2.FONT_HERSHEY_SIMPLEX,1,(255,255,255),1) # 将图像帧转换成Numpy数组,方便处理和分析 frame = np.asarray(frame) #将frame输入到模型model中预测 results = model(frame) # 标志出电瓶车 for result in results.xyxy[0]: x1, y1, x2, y2 = map(int, result[:4]) label = f'{model.names[int(result[5])]} {result[4]:.2f}' # 字符串label对应的是yolov5中的类别索引,和预测结果中的置信度(保留2位小数) print(label)#打印标签和置信度 cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0,255), 2) cv2.putText(frame, "dianpingche", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) image = Image.fromarray(frame) # 将 PIL.Image 转换为 Tkinter.PhotoImage 格式 photo = ImageTk.PhotoImage(image) # 更新 Label 的图像 video_label.config(image=photo) video_label.image = photo print(time.time()-stat_time) video_label.after(10, lambda:show_camera(video_label,cap,model) )
时间: 2023-11-12 16:04:55 浏览: 88
可以修改代码如下:
```
def show_camera(video_label, cap, model, confidence_threshold=0.7):
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
stat_time = time.time()
ret, frame = cap.read()
if ret:
current_time = datetime.datetime.now().strftime(('%Y-%m-%d %H:%M:%S'))
cv2.putText(frame, current_time, (width-500, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 1)
frame = np.asarray(frame)
results = model(frame)
for result in results.xyxy[0]:
x1, y1, x2, y2 = map(int, result[:4])
label = f'{model.names[int(result[5])]} {result[4]:.2f}'
if result[4] >= confidence_threshold:
print(label)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv2.putText(frame, "dianpingche", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
image = Image.fromarray(frame)
photo = ImageTk.PhotoImage(image)
video_label.config(image=photo)
video_label.image = photo
print(time.time()-stat_time)
video_label.after(10, lambda:show_camera(video_label,cap,model, confidence_threshold))
```
主要修改了两点:
1. 添加了一个新的参数 `confidence_threshold`,用于控制置信度的阈值。
2. 在标志电瓶车前加了一个判断,只有当置信度大于等于阈值时才进行标志。
这样,当模型预测的置信度小于阈值时,预测结果就不会被显示出来了。
阅读全文