LITS MATLAB UNET分割代码
时间: 2024-03-02 13:28:31 浏览: 155
基于MATLAB的分割代码
以下是一个使用UNet进行图像分割的MATLAB示例代码:
首先,加载训练数据和标签,并将其转换为适合网络的格式:
```matlab
imds = imageDatastore('training_images');
pxds = pixelLabelDatastore('training_labels', classes);
imSize = size(readimage(imds,1));
numClasses = numel(classes);
%%% 将训练数据转换为网络输入格式
imageSize = [imSize 3];
pximds = pixelLabelImageDatastore(imds, pxds, 'OutputSize', imageSize);
%%% 定义 UNet 网络架构
unetLayers = unetLayers(imageSize, numClasses, 'EncoderDepth', 3);
%%% 定义训练选项
options = trainingOptions('adam', ...
'MaxEpochs', 50, ...
'MiniBatchSize', 16, ...
'InitialLearnRate', 1e-3, ...
'Shuffle', 'every-epoch', ...
'ValidationData', {imdsValidation, pxdsValidation}, ...
'ValidationFrequency', 10, ...
'Plots', 'training-progress');
%%% 训练网络
net = trainNetwork(pximds, unetLayers, options);
```
然后,加载测试数据并对其进行分割:
```matlab
%%% 加载测试数据
imdsTest = imageDatastore('test_images');
%%% 对每个测试图像进行分割
pxdsResults = semanticseg(imdsTest, net, 'WriteLocation', 'test_results');
%%% 可视化分割结果
I = readimage(imdsTest,1);
C = readimage(pxdsResults,1);
B = labeloverlay(I,C,'Colormap',cmap,'Transparency',0.4);
imshow(B)
```
注意:这里的 `classes` 和 `cmap` 是预先定义的变量,分别表示标签类别和颜色映射。你需要根据自己的数据集进行相应的修改。
阅读全文