解释如下代码:def detect_peaks(image): """ Takes an image and detect the peaks usingthe local maximum filter. Returns a boolean mask of the peaks (i.e. 1 when the pixel's value is the neighborhood maximum, 0 otherwise) """ # define an 8-connected neighborhood neighborhood = generate_binary_structure(2,2) #apply the local maximum filter; all pixel of maximal value #in their neighborhood are set to 1 local_max = maximum_filter(image, footprint=neighborhood)==image #local_max is a mask that contains the peaks we are #looking for, but also the background. #In order to isolate the peaks we must remove the background from the mask. #we create the mask of the background background = (image==0) #a little technicality: we must erode the background in order to #successfully subtract it form local_max, otherwise a line will #appear along the background border (artifact of the local maximum filter) eroded_background = binary_erosion(background, structure=neighborhood, border_value=1) #we obtain the final mask, containing only peaks, #by removing the background from the local_max mask (xor operation) detected_peaks = local_max ^ eroded_background return detected_peaks
时间: 2024-03-29 18:36:44 浏览: 48
peaks作图代码
这段代码是一个用于检测图像中峰值的函数。函数接受一个图像作为输入,并使用局部最大过滤器来检测峰值。这里使用了一个8-邻域的结构来定义峰值的邻域。局部最大过滤器会将所有像素中邻域内最大值的像素设为1,其余像素设为0。从这个过程中得到的图像被称为local_max。然而,local_max不仅包含了峰值,还包含了背景信息。为了只获得峰值信息,需要将背景从local_max中去除。这里采用了一个二值的背景掩膜,并对其进行腐蚀操作,以避免出现边缘伪影。最后,使用异或操作,将local_max和背景掩膜相减,得到只包含峰值信息的掩膜。最终函数返回这个掩膜。
阅读全文