audio HAL 2.0接口是怎样的

时间: 2023-12-01 20:04:15 浏览: 55
好的,以下是一个简单的 audio HAL 2.0 接口的示例: ```c++ #include <hardware/hardware.h> #include <hardware/audio.h> // 定义音频硬件抽象层(HAL)接口 struct audio_hw_device { struct hw_device_t common; // 添加音频通道(Audio Channel)接口 void (*register_audio_channel)(struct audio_hw_device* dev, audio_channel_t* channel); void (*unregister_audio_channel)(struct audio_hw_device* dev, audio_channel_t* channel); // 保留音频 HAL 1.0 接口 int (*set_voice_volume)(struct audio_hw_device* dev, float volume); int (*set_master_volume)(struct audio_hw_device* dev, float volume); int (*set_mode)(struct audio_hw_device* dev, audio_mode_t mode); int (*set_mic_mute)(struct audio_hw_device* dev, bool state); int (*set_parameters)(struct audio_hw_device* dev, const char* kvpairs); char* (*get_parameters)(struct audio_hw_device* dev, const char* keys); int (*set_input_device)(struct audio_hw_device* dev, audio_devices_t device); int (*set_output_device)(struct audio_hw_device* dev, audio_devices_t device); int (*init_check)(const struct audio_hw_device* dev); }; // 定义音频通道(Audio Channel)接口 struct audio_channel { audio_channel_handle_t handle; void (*set_config)(struct audio_channel* channel, audio_config_t* config); void (*get_config)(struct audio_channel* channel, audio_config_t* config); }; // 定义音频硬件抽象层(HAL)模块 struct audio_module { struct hw_module_t common; }; // 定义音频硬件抽象层(HAL)模块方法 struct audio_module_methods { int (*open)(const struct hw_module_t* module, const char* name, struct hw_device_t** device); int (*close)(struct hw_device_t* device); }; // 定义音频硬件抽象层(HAL)模块实例 struct audio_module HAL_MODULE_INFO_SYM = { .common = { .tag = HARDWARE_MODULE_TAG, .module_api_version = AUDIO_MODULE_API_VERSION_2_0, // 升级到音频模块 API 版本 2.0 .hal_api_version = HARDWARE_HAL_API_VERSION, .id = "audio.default", .name = "Default audio HW HAL", .author = "The Android Open Source Project", .methods = &audio_module_methods, }, }; // 定义音频硬件抽象层(HAL)模块方法实现 static struct audio_hw_device* open_audio_device(const struct hw_module_t* module, const char* name, uint32_t device) { struct audio_hw_device* dev; dev = (struct audio_hw_device*)calloc(1, sizeof(struct audio_hw_device)); dev->common.tag = HARDWARE_DEVICE_TAG; dev->common.version = AUDIO_DEVICE_API_VERSION_2_0; // 升级到音频设备 API 版本 2.0 dev->common.module = (struct hw_module_t*)module; dev->register_audio_channel = NULL; dev->unregister_audio_channel = NULL; dev->set_voice_volume = NULL; dev->set_master_volume = NULL; dev->set_mode = NULL; dev->set_mic_mute = NULL; dev->set_parameters = NULL; dev->get_parameters = NULL; dev->set_input_device = NULL; dev->set_output_device = NULL; dev->init_check = NULL; return dev; } static int close_audio_device(struct audio_hw_device* dev) { free(dev); return 0; } static struct audio_module_methods audio_module_methods = { .open = open_audio_device, .close = close_audio_device, }; ``` 这段代码演示了如何定义一个简单的 audio HAL 2.0 接口,它在 audio HAL 1.0 接口的基础上新增了音频通道(Audio Channel)接口。通过音频通道接口,音频 HAL 驱动程序可以管理多个音频通道,每个通道可以使用不同的音频格式和采样率。这样,音频 HAL 驱动程序可以更灵活地处理音频数据,提高音频性能。在实现音频 HAL 2.0 接口时,需要注意兼容性问题,以确保它与 Android 系统的其他组件正常运行。

相关推荐

最新推荐

recommend-type

Android audio知识总结.pdf

本文将深入探讨Android音频框架,特别是AudioTrack、AudioRecord、AudioSystem、AudioPolicyService、AudioFlinger以及Audio HAL,并讨论它们在音视频处理中的作用。 1. AudioTrack: AudioTrack是Android应用程序...
recommend-type

MTK_Camera_HAL3架构.doc

HAL3的主要目标是为应用程序提供高效、灵活的相机功能,同时简化供应商对硬件接口的实现。 在Android AOSP Camera框架中,硬件抽象层(HAL)定义了一系列接口,使得Camera Service能够与不同供应商的相机硬件进行...
recommend-type

HAL3900 设置3D测量模式

HAL 39xy是TDK Micronas推出的新一代3D定位传感器,解决了杂散场鲁棒位置传感器(线性和角度)以及符合ISO 26262标准的开发需求。在此提供给了HAL3900 设置3D测量模式的方法。
recommend-type

HAL3900 SPI命令格式说明

HAL 39xy是TDK Micronas推出的新一代3D定位传感器,解决了杂散场鲁棒位置传感器(线性和角度)以及符合ISO 26262标准的开发需求。在此提供给了HAL3900 SPI命令格式的调试说明。
recommend-type

STM32 HAL_LOCK问题

STM32 HAL_LOCK问题 STM32 HAL_LOCK问题 在使用STM32的HAL库开发时候,在使用UART和CAN的使用,偶尔会碰到突然不再接收数据的情况.调试发现,信号有的,但是就是软件不再进入接收中断了. 通过调试,最后定位到问题点在于_...
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。