RNN做cifar-10图像分类任务pytorch版本的代码
时间: 2023-12-25 10:05:27 浏览: 68
下面是一个基于PyTorch实现的RNN对cifar-10图像分类的代码,使用了LSTM作为RNN的模型。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
# 超参数设置
input_size = 32
sequence_length = 3
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 10
learning_rate = 0.001
# CIFAR-10数据集下载和预处理
transform = transforms.Compose(
[transforms.Resize((input_size, input_size)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
train_dataset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size,
shuffle=True, num_workers=2)
test_dataset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size,
shuffle=False, num_workers=2)
# LSTM模型定义
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, num_classes):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, num_classes)
def forward(self, x):
# 初始状态
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# 前向传播 LSTM
out, _ = self.lstm(x, (h0, c0))
# 取最后一个时间步的输出
out = self.fc(out[:, -1, :])
return out
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = RNN(input_size, hidden_size, num_layers, num_classes).to(device)
# 损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# 模型训练
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 将图像序列转换成LSTM需要的形状
images = images.reshape(-1, sequence_length, input_size * input_size * 3).to(device)
labels = labels.to(device)
# 前向传播
outputs = model(images)
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'
.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 模型测试
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
# 将图像序列转换成LSTM需要的形状
images = images.reshape(-1, sequence_length, input_size * input_size * 3).to(device)
labels = labels.to(device)
# 前向传播
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Test Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
```
需要注意的是,这个代码中使用了一个将图像序列转换成LSTM需要的形状的过程,即将每个图像的像素展平成一维向量,并将图像序列的第二个维度设置为序列长度。
阅读全文