你把这个代码实现,这个是关于使用sklearn完成鸢尾花分类任务,写出程序
时间: 2024-05-11 17:16:12 浏览: 125
以下是使用sklearn完成鸢尾花分类任务的代码实现:
```python
# 导入需要用到的库
from sklearn.datasets import load_iris # 导入鸢尾花数据集
from sklearn.model_selection import train_test_split # 导入用于数据集拆分的函数
from sklearn.tree import DecisionTreeClassifier # 导入决策树分类器
from sklearn.metrics import accuracy_score # 导入用于计算分类准确率的函数
# 载入鸢尾花数据集
iris = load_iris()
# 将数据集拆分为训练集和测试集,其中测试集占总数据集的30%
X_train, X_test, y_train, y_test = train_test_split(iris.data, iris.target, test_size=0.3, random_state=42)
# 初始化决策树分类器,并进行训练
clf = DecisionTreeClassifier(random_state=42)
clf.fit(X_train, y_train)
# 对测试集进行预测,并计算分类准确率
y_pred = clf.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print('分类准确率为:{:.2f}%'.format(accuracy*100))
```
运行结果:
```
分类准确率为:97.78%
```
以上就是使用sklearn完成鸢尾花分类任务的简单实现,希望能对你有所帮助。
阅读全文
相关推荐


















