发我DCGAN的模型及训练及测试代码
时间: 2023-10-11 15:09:55 浏览: 147
基于DCGAN的 改进代码
抱歉,我作为AI语言模型不能够提供代码。但是,以下是DCGAN的Python代码示例,您可以根据自己的需要进行修改和优化:
```
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
# Load the MNIST dataset
mnist = input_data.read_data_sets('MNIST_data')
# Define the generator network
def generator(z, reuse=None):
with tf.variable_scope('gen', reuse=reuse):
hidden1 = tf.layers.dense(inputs=z, units=128)
# Leaky ReLU activation
alpha = 0.01
hidden1 = tf.maximum(alpha * hidden1, hidden1)
hidden2 = tf.layers.dense(inputs=hidden1, units=128)
hidden2 = tf.maximum(alpha * hidden2, hidden2)
output = tf.layers.dense(inputs=hidden2, units=784, activation=tf.nn.tanh)
return output
# Define the discriminator network
def discriminator(X, reuse=None):
with tf.variable_scope('dis', reuse=reuse):
hidden1 = tf.layers.dense(inputs=X, units=128)
alpha = 0.01
hidden1 = tf.maximum(alpha * hidden1, hidden1)
hidden2 = tf.layers.dense(inputs=hidden1, units=128)
hidden2 = tf.maximum(alpha * hidden2, hidden2)
# Sigmoid activation function for binary classification
logits = tf.layers.dense(hidden2, units=1)
output = tf.sigmoid(logits)
return output, logits
# Define the placeholders for input and noise variables
real_images = tf.placeholder(tf.float32, shape=[None, 784])
z = tf.placeholder(tf.float32, shape=[None, 100])
# Generate fake images from the generator network
G = generator(z)
# Calculate the discriminator output for real and fake images
D_output_real, D_logits_real = discriminator(real_images)
D_output_fake, D_logits_fake = discriminator(G, reuse=True)
# Define the loss functions for generator and discriminator
def loss_func(logits_in, labels_in):
return tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=logits_in, labels=labels_in))
D_real_loss = loss_func(D_logits_real, tf.ones_like(D_logits_real) * 0.9)
D_fake_loss = loss_func(D_logits_fake, tf.zeros_like(D_logits_real))
D_loss = D_real_loss + D_fake_loss
G_loss = loss_func(D_logits_fake, tf.ones_like(D_logits_fake))
# Define the optimizer for generator and discriminator
learning_rate = 0.001
tvars = tf.trainable_variables()
d_vars = [var for var in tvars if 'dis' in var.name]
g_vars = [var for var in tvars if 'gen' in var.name]
D_trainer = tf.train.AdamOptimizer(learning_rate).minimize(D_loss, var_list=d_vars)
G_trainer = tf.train.AdamOptimizer(learning_rate).minimize(G_loss, var_list=g_vars)
# Define the batch size and number of epochs
batch_size = 100
epochs = 100
samples = []
# Start the TensorFlow session
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
# Train the DCGAN
for epoch in range(epochs):
for i in range(mnist.train.num_examples // batch_size):
batch = mnist.train.next_batch(batch_size)
# Generate random noise for the generator input
batch_images = batch[0].reshape((batch_size, 784))
batch_images = batch_images * 2 - 1
batch_noise = np.random.uniform(-1, 1, size=(batch_size, 100))
# Train the discriminator on real and fake images
_ = sess.run(D_trainer, feed_dict={real_images: batch_images, z: batch_noise})
# Train the generator by fooling the discriminator
_ = sess.run(G_trainer, feed_dict={z: batch_noise})
# Print the loss function for discriminator and generator after each epoch
print("Epoch {} completed. D Loss: {:.4f}, G Loss: {:.4f}".format(epoch+1, sess.run(D_loss, feed_dict={real_images: batch_images, z: batch_noise}), sess.run(G_loss, feed_dict={z: batch_noise})))
# Save generated images for testing
sample_noise = np.random.uniform(-1, 1, size=(1, 100))
gen_sample = sess.run(generator(z, reuse=True), feed_dict={z: sample_noise})
samples.append(gen_sample)
# Plot the generated images
fig, axes = plt.subplots(nrows=1, ncols=10, sharex=True, sharey=True, figsize=(20, 2))
for img, ax in zip(samples[0], axes):
ax.imshow(img.reshape((28, 28)), cmap='Greys_r')
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
plt.show()
```
阅读全文