class Focus(nn.Module): # Focus wh information into c-space def init(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups super().init() self.conv = Conv(c1 * 4, c2, k, s, p, g, act) # self.contract = Contract(gain=2) def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2) return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)) # return self.conv(self.contract(x)) 详细分析这个程序的结构和实现的功能
时间: 2023-06-26 10:03:35 浏览: 113
k-nn算法全套,kn计算公式,matlab
5星 · 资源好评率100%
这是一个 PyTorch 中的神经网络模块。它被称为 Focus,作用是将输入张量中的宽和高信息集中到通道维度(c-space)中。下面是对这个程序的结构和功能的详细分析:
```python
class Focus(nn.Module):
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
super().__init__()
self.conv = Conv(c1 * 4, c2, k, s, p, g, act) # Conv 是一个卷积层,这里定义了一个卷积层 self.conv
# self.contract = Contract(gain=2) # 这行代码被注释掉了,不用理会
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
# 输入的 x 是一个四维的张量,第一维是 batch_size,第二维是通道数,第三维和第四维是宽和高
# 下面的代码将 x 中宽和高的信息集中到通道维度中,具体做法是将每个 2x2 的像素块中的四个像素在通道维度上拼接起来
return self.conv(torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1))
# 这里用到了 PyTorch 中的 torch.cat 函数,将四个张量拼接在一起,第一个参数是要拼接的张量列表,第二个参数是指定在哪个维度上拼接
```
总之,这个 Focus 模块的作用是将输入张量的宽和高信息集中到通道维度中,以便后续的神经网络模型可以更好地利用这些信息进行特征提取和分类。
阅读全文