pso优化算法的matlab完整代码
时间: 2023-07-09 10:46:40 浏览: 97
PSO.rar_PSO matlab 代码_PSO算法 MATLAB_matlab pso_pso 优化_pso算法
PSO (Particle Swarm Optimization) 是一种常用的优化算法,以下是 MATLAB 中实现的简单代码示例:
```matlab
function [x, fval] = pso(fun, nvars, lb, ub)
% PSO parameters
n = 100; % number of particles
w = 0.729; % inertia weight
c1 = 1.49445; % cognitive parameter
c2 = 1.49445; % social parameter
maxiter = 100; % maximum number of iterations
% Initialize particles
x = repmat(lb, n, 1) + rand(n, nvars) .* repmat(ub - lb, n, 1);
v = zeros(n, nvars);
p = x;
pbest = inf(n, 1);
% Evaluate initial particles
for i = 1:n
f = feval(fun, x(i,:));
if f < pbest(i)
p(i,:) = x(i,:);
pbest(i) = f;
end
end
% Main loop
for iter = 1:maxiter
% Update particle velocities and positions
for i = 1:n
v(i,:) = w*v(i,:) + c1*rand(1,nvars).*(p(i,:) - x(i,:)) + c2*rand(1,nvars).*(pbest(i,:) - x(i,:));
x(i,:) = x(i,:) + v(i,:);
% Check boundaries
x(i,:) = max(x(i,:), lb);
x(i,:) = min(x(i,:), ub);
end
% Evaluate particles
for i = 1:n
f = feval(fun, x(i,:));
if f < pbest(i)
p(i,:) = x(i,:);
pbest(i) = f;
end
end
% Update global best
[fval, gbest] = min(pbest);
xbest = p(gbest,:);
% Check convergence
if iter > 1 && abs(fval - fval_old) < 1e-6
break
end
fval_old = fval;
end
x = xbest;
```
其中,输入参数为:
- `fun`:优化函数句柄
- `nvars`:变量个数
- `lb`:变量下界
- `ub`:变量上界
输出参数为:
- `x`:最优解
- `fval`:最优解对应的函数值
例如,对于 Rosenbrock 函数,可以使用以下代码进行优化:
```matlab
fun = @(x) 100*(x(2)-x(1)^2)^2 + (1-x(1))^2;
nvars = 2;
lb = [-5 -5];
ub = [5 5];
[x, fval] = pso(fun, nvars, lb, ub);
```
参考文献:
- Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks (pp. 1942-1948). DOI: 10.1109/ICNN.1995.488968
阅读全文