能不能用matlab帮我编写lstm和注意力机制结合的代码
时间: 2024-06-11 22:04:07 浏览: 91
基于卷积神经网络-长短期记忆网络结合注意力机制(CNN-LSTM-Attention)分类预测,matlab代码,2020版本及
作为AI语言模型,我可以提供一些lstm和注意力机制的代码示例,但是这需要您提供更具体的任务和数据集信息,以便我能够更好地为您提供帮助。以下是一个简单的示例代码:
```matlab
% Load data
trainData = load('trainData.mat');
trainLabels = load('trainLabels.mat');
testData = load('testData.mat');
testLabels = load('testLabels.mat');
% Define LSTM network architecture
numFeatures = size(trainData,2);
numClasses = numel(unique(trainLabels));
numHiddenUnits = 100;
layers = [
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','last')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer
];
% Train LSTM network
options = trainingOptions('adam', ...
'MaxEpochs',30, ...
'MiniBatchSize',64, ...
'InitialLearnRate',0.001, ...
'GradientThreshold',1, ...
'Shuffle','every-epoch', ...
'Plots','training-progress');
net = trainNetwork(trainData,trainLabels,layers,options);
% Define attention mechanism
attentionLayer = attentionLayer(numHiddenUnits, numFeatures);
% Combine LSTM network and attention mechanism
combinedLayers = [
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
attentionLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer
];
% Train combined network
options = trainingOptions('adam', ...
'MaxEpochs',30, ...
'MiniBatchSize',64, ...
'InitialLearnRate',0.001, ...
'GradientThreshold',1, ...
'Shuffle','every-epoch', ...
'Plots','training-progress');
net_combined = trainNetwork(trainData,trainLabels,combinedLayers,options);
% Evaluate trained network on test data
predictedLabels = classify(net,testData);
accuracy = sum(predictedLabels == testLabels)/numel(testLabels);
disp(['Test accuracy: ', num2str(accuracy)]);
```
阅读全文