灰狼算法matlab代码
时间: 2023-11-01 17:06:22 浏览: 69
以下是灰狼优化算法的 MATLAB 代码:
```matlab
function [best_score, best_pos] = grey_wolf_optimizer(fitness_func, dim, lb, ub, max_iter, pack_size)
% Grey Wolf Optimizer
% References:
% S. Mirjalili, S. M. Mirjalili, A. Hatamlou, "Multi-objective grey wolf optimizer: A novel algorithm for multi-criterion optimization," Expert Systems with Applications, vol. 47, pp. 106-119, 2016.
% S. Mirjalili, "Grey Wolf Optimizer," Advances in Engineering Software, vol. 69, pp. 46-61, 2014.
%
% Parameters:
% fitness_func - the fitness function to be optimized
% dim - number of dimensions of the search space
% lb - lower bound of the search space
% ub - upper bound of the search space
% max_iter - maximum number of iterations
% pack_size - number of wolves in a pack
%
% Output:
% best_score - the best fitness score obtained by the algorithm
% best_pos - the best solution obtained by the algorithm
% Set the parameters of the algorithm
alpha = 0.1; % Alpha parameter of the GWO algorithm
beta = 0.2; % Beta parameter of the GWO algorithm
delta = 0.5; % Delta parameter of the GWO algorithm
D = ub - lb; % Search space range
% Initialize the positions of the wolves
positions = lb + rand(pack_size, dim) .* D;
fitness = zeros(pack_size, 1);
% Evaluate the fitness of the initial positions
for i = 1:pack_size
fitness(i) = fitness_func(positions(i, :));
end
% Initialize the best score and position
[best_score, best_idx] = min(fitness);
best_pos = positions(best_idx, :);
% Main loop of the algorithm
for iter = 1:max_iter
% Update the positions of the wolves
for i = 1:pack_size
% Calculate the distance and direction of the alpha, beta, and delta wolves
A = alpha * (2 * rand(dim) - 1);
C = 2 * rand(dim);
D = abs(C .* best_pos - positions(i, :));
X1 = best_pos - A .* D;
B = beta * (2 * rand(dim) - 1);
D = abs(C .* best_pos - positions(i, :));
X2 = best_pos - B .* D;
E = delta * (2 * rand(dim) - 1);
D = abs(C .* best_pos - positions(i, :));
X3 = best_pos - E .* D;
% Calculate the new position of the current wolf
new_pos = (X1 + X2 + X3) / 3;
% Check if the new position is within the search space
new_pos = max(new_pos, lb);
new_pos = min(new_pos, ub);
% Evaluate the fitness of the new position
new_fitness = fitness_func(new_pos);
% Update the position and fitness of the current wolf
if new_fitness < fitness(i)
positions(i, :) = new_pos;
fitness(i) = new_fitness;
% Update the best score and position if necessary
if new_fitness < best_score
best_score = new_fitness;
best_pos = new_pos;
end
end
end
end
end
```
在上面的代码中,`fitness_func` 是要优化的目标函数,`dim` 是搜索空间的维度,`lb` 和 `ub` 是搜索空间的下界和上界,`max_iter` 是算法的最大迭代次数,`pack_size` 是狼群中的狼的数量。函数的输出是最优解的适应度值 `best_score` 和最优解的位置 `best_pos`。
阅读全文