loop.set_description(f'Item [{item + 1}/{10}] Epoch [{epoch + 1}/{100}]') loop.set_postfix(loss=loss.item(), acc=acc)
时间: 2024-05-17 08:15:21 浏览: 110
这段代码是用来更新进度条的描述信息和后缀信息的。其中,loop是之前创建的进度条对象,set_description()方法用来设置进度条的描述信息,这里将描述信息设置为当前处理的数据项和当前的训练轮数。set_postfix()方法用来设置进度条的后缀信息,这里将后缀信息设置为当前的损失值和准确率。通过不断更新进度条的描述信息和后缀信息,可以让用户更加直观地了解程序的运行情况。
相关问题
def the_loop(net, optimizer, train_loader, val_loader=None, epochs=None, swa_model=None, swa_start=5): if epochs is None: raise Exception("a training duration must be given: set epochs") log_iterval = 1 running_mean = 0. loss = torch.Tensor([0.]).cuda() losses = [] val_losses = [] states = [] i, j = 0, 0 pbar = tqdm(train_loader, desc=f"epoch {i}", postfix={"loss": loss.item(), "step": j}) for i in range(epochs): running_mean = 0. j = 0 pbar.set_description(f"epoch {i}") pbar.refresh() pbar.reset() for j, batch in enumerate(train_loader): # implement training step by # - appending the current states to `states` # - doing a training_step # - appending the current loss to the `losses` list # - update the running_mean for logging states.append(net.state_dict()) optimizer.zero_grad() output = net(batch) batch_loss = loss_function(output, batch.target) batch_loss.backward() optimizer.step() losses.append(batch_loss.item()) running_mean = (running_mean * j + batch_loss.item()) / (j + 1) if j % log_iterval == 0 and j != 0: pbar.set_postfix({"loss": running_mean, "step": j}) running_mean = 0. pbar.update() if i > swa_start and swa_model is not None: swa_model.update_parameters(net) if val_loader is not None: val_loss = 0. with torch.no_grad(): for val_batch in val_loader: val_output = net(val_batch) val_loss += loss_function(val_output, val_batch.target).item() val_loss /= len(val_loader) val_losses.append(val_loss) pbar.refresh() if val_loader is not None: return losses, states, val_losses return losses, states net = get_OneFCNet() epochs = 10 optimizer = GD(net.parameters(), 0.002) loss_fn = nn.CrossEntropyLoss() losses, states = the_loop(net, optimizer, gd_data_loader, epochs=epochs) fig = plot_losses(losses) iplot(fig)这是之前的代码怎么修改这段代码的错误?
根据错误提示,您的模型在CPU和GPU之间切换,因此您需要确保模型和数据都在同一个设备上。您可以将数据加载器的设备设为与模型相同的设备,例如:
```python
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
train_loader.to(device)
```
将类似的代码放在数据加载器的定义之后,确保数据和模型都在同一个设备上。如果您的模型已经在GPU上,可以使用`.cuda()`方法将数据加载器移到GPU上,如下所示:
```python
train_loader = train_loader.cuda()
```
To do multiple steps, we implement a function the_loop that iterates over a dataloader. It should do a training step per batch for epochs. After one epoch, the loss on the validation set should be calculated.帮我根据这个要求补充完整下面代码中。。。的部分。 def the_loop(net, optimizer, train_loader, val_loader=None, epochs=None, swa_model=None, swa_start=5): if epochs is None: raise Exception("a training duration must be given: set epochs") log_iterval = 1 running_mean = 0. loss = Tensor([0.]).cuda() losses = [] val_losses = [] states = [] i, j = 0, 0 pbar = tqdm(train_loader, desc=f"epoch {i}", postfix={"loss": loss.item(), "step": j}) for i in range(epochs): running_mean = 0. j = 0 pbar.set_description(f"epoch {i}") pbar.refresh() pbar.reset() for j, batch in enumerate(train_loader): # implement training step by # - appending the current states to `states` # - doing a training_step # - appending the current loss to the `losses` list # - update the running_mean for logging ... if j % log_iterval == 0 and j != 0: pbar.set_postfix({"loss": running_mean.item(), "step": j}) running_mean = 0. pbar.update() if i > swa_start and swa_model is not None: swa_model.update_parameters(net) if val_loader is not None: # evaluate the current net on the validation data loader and # collect all losses in the ´val_loss´ list ... pbar.refresh() if val_loader is not None: return losses, states, val_losses return losses, states
Here is the completed code:
```python
def the_loop(net, optimizer, train_loader, val_loader=None, epochs=None, swa_model=None, swa_start=5):
if epochs is None:
raise Exception("a training duration must be given: set epochs")
log_iterval = 1
running_mean = 0.
loss = torch.Tensor([0.]).cuda()
losses = []
val_losses = []
states = []
i, j = 0, 0
pbar = tqdm(train_loader, desc=f"epoch {i}", postfix={"loss": loss.item(), "step": j})
for i in range(epochs):
running_mean = 0.
j = 0
pbar.set_description(f"epoch {i}")
pbar.refresh()
pbar.reset()
for j, batch in enumerate(train_loader):
# implement training step by
# - appending the current states to `states`
# - doing a training_step
# - appending the current loss to the `losses` list
# - update the running_mean for logging
states.append(net.state_dict())
optimizer.zero_grad()
output = net(batch)
batch_loss = loss_function(output, batch.target)
batch_loss.backward()
optimizer.step()
losses.append(batch_loss.item())
running_mean = (running_mean * j + batch_loss.item()) / (j + 1)
if j % log_iterval == 0 and j != 0:
pbar.set_postfix({"loss": running_mean, "step": j})
running_mean = 0.
pbar.update()
if i > swa_start and swa_model is not None:
swa_model.update_parameters(net)
if val_loader is not None:
val_loss = 0.
with torch.no_grad():
for val_batch in val_loader:
val_output = net(val_batch)
val_loss += loss_function(val_output, val_batch.target).item()
val_loss /= len(val_loader)
val_losses.append(val_loss)
pbar.refresh()
if val_loader is not None:
return losses, states, val_losses
return losses, states
```
Note that the training step implementation assumes that you have already defined a `loss_function` and that the batch data has an attribute named `target` that contains the ground truth labels.
阅读全文