transform = transforms.Compose([Normalization()]) train_set = SpecklesDataset(csv_file='E:\StrainNet\Dataset\Speckle dataset 1.0\Train_annotations.csv', root_dir='E:\StrainNet\Dataset/Speckle dataset 1.0\Reference_speckle_frames\Train_Data', transform = transform) test_set = SpecklesDataset(csv_file='E:\StrainNet\Dataset\Speckle dataset 1.0\Test_annotations.csv', root_dir='E:\StrainNet\Dataset\Speckle dataset 1.0\Reference_speckle_frames\Test_Data', transform = transform) print('{} samples found, {} train samples and {} test samples '.format(len(test_set)+len(train_set), len(train_set), len(test_set))) train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, num_workers=args.workers, pin_memory =True, shuffle=True) val_loader = torch.utils.data.DataLoader(test_set, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True, shuffle=True) # create model
时间: 2024-02-14 20:24:36 浏览: 117
Homogeneous Transforms.rar_homogeneous_homogeneous matlab
这段代码是为了创建数据集,并构建相应的数据加载器。其中,`transforms.Compose` 是一个用于组合多个数据变换操作的类,`Normalization()` 是其中的一个数据变换操作,用于对输入的数据进行归一化处理。`SpecklesDataset` 是一个自定义的数据集类,用于读取 CSV 文件并加载图像数据。在这个代码段中,分别创建了训练集和测试集,并使用 `torch.utils.data.DataLoader` 创建了训练数据加载器和测试数据加载器。在创建加载器时,使用了 `batch_size`、`num_workers`、`pin_memory` 和 `shuffle` 等参数来控制批次大小、工作进程数量、是否将数据加载到 GPU 内存中以及是否打乱数据的顺序。最后,该代码段还创建了一个模型。
阅读全文