rbf神经网络机械臂代码
时间: 2023-07-08 09:32:55 浏览: 176
(MATLAB源码)机械臂RBF神经网络控制
5星 · 资源好评率100%
以下是一个使用RBF神经网络控制机械臂的示例代码:
```python
import numpy as np
from scipy.spatial.distance import cdist
class RBFNN:
def __init__(self, hidden_size, output_size, sigma=1):
self.hidden_size = hidden_size
self.output_size = output_size
self.sigma = sigma
self.centers = None
self.weights = None
def fit(self, X, y):
self.centers = X[np.random.choice(len(X), self.hidden_size, replace=False)]
distances = cdist(X, self.centers)
self.weights = np.linalg.pinv(distances) @ y
def predict(self, X):
distances = cdist(X, self.centers)
return distances @ self.weights
# 机械臂的关节角度范围
joint_ranges = [
(-np.pi, np.pi), # joint 1
(-np.pi/2, np.pi/2), # joint 2
(-np.pi/2, np.pi/2), # joint 3
(-np.pi/2, np.pi/2), # joint 4
(-np.pi/2, np.pi/2), # joint 5
(-np.pi, np.pi), # joint 6
]
# 生成随机的关节角度
def random_joint_angles():
return [np.random.uniform(joint_range[0], joint_range[1]) for joint_range in joint_ranges]
# 正向运动学计算末端位置
def forward_kinematics(joint_angles):
# TODO: 根据机械臂的几何结构计算末端位置
pass
# 逆向运动学计算关节角度
def inverse_kinematics(position):
# TODO: 根据机械臂的几何结构和末端位置计算关节角度
pass
# 生成数据集
X = []
y = []
for _ in range(1000):
joint_angles = random_joint_angles()
position = forward_kinematics(joint_angles)
X.append(joint_angles)
y.append(position)
X = np.array(X)
y = np.array(y)
# 训练 RBF 神经网络模型
rbf = RBFNN(hidden_size=50, output_size=3)
rbf.fit(X, y)
# 控制机械臂运动
while True:
# 读取机械臂当前末端位置
position = # TODO: 读取末端位置
# 计算目标关节角度
target_joint_angles = inverse_kinematics(position)
# 使用 RBF 神经网络计算关节角度控制信号
control_signal = rbf.predict(np.array([target_joint_angles]))[0]
# 发送控制信号给机械臂
# TODO: 发送控制信号
阅读全文