遗传算法求解TSP C++
时间: 2023-07-07 13:26:04 浏览: 129
遗传算法(Genetic Algorithm)可以用于求解TSP问题(Traveling Salesman Problem),以下是一个C++实现的示例代码:
```c++
#include <iostream>
#include <cstdlib>
#include <ctime>
#include <cmath>
#include <algorithm>
using namespace std;
const int N = 30; //城市数量
const int POP_SIZE = 100; //种群大小
const int MAX_GEN = 500; //最大迭代次数
const double MUTATION_RATE = 0.1; //变异概率
const double CROSSOVER_RATE = 0.9; //交叉概率
const double PI = acos(-1.0);
int city[N][2]; //城市坐标
int pop[POP_SIZE][N]; //种群
double fitness[POP_SIZE]; //适应度
int best_idx; //最优个体的索引
int best_path[N]; //最优路径
//初始化城市坐标
void init_city()
{
srand(time(NULL));
for (int i = 0; i < N; i++) {
city[i][0] = rand() % 100;
city[i][1] = rand() % 100;
}
}
//计算两个城市之间的距离
double dist(int i, int j)
{
return sqrt((city[i][0] - city[j][0]) * (city[i][0] - city[j][0]) + (city[i][1] - city[j][1]) * (city[i][1] - city[j][1]));
}
//初始化种群
void init_pop()
{
for (int i = 0; i < POP_SIZE; i++) {
for (int j = 0; j < N; j++) {
pop[i][j] = j;
}
random_shuffle(pop[i], pop[i] + N);
}
}
//计算个体的适应度
double calc_fitness(int *p)
{
double len = 0;
for (int i = 0; i < N; i++) {
len += dist(p[i], p[(i + 1) % N]);
}
return 1.0 / len;
}
//计算种群的适应度
void calc_pop_fitness()
{
for (int i = 0; i < POP_SIZE; i++) {
fitness[i] = calc_fitness(pop[i]);
}
}
//选择操作(轮盘赌)
int select()
{
double r = (double)rand() / RAND_MAX;
double sum = 0;
for (int i = 0; i < POP_SIZE; i++) {
sum += fitness[i];
if (r < sum) {
return i;
}
}
}
//交叉操作(顺序交叉)
void crossover(int *p1, int *p2, int *c1, int *c2)
{
int pos1 = rand() % N, pos2 = rand() % N;
if (pos1 > pos2) {
swap(pos1, pos2);
}
bool vis[N] = {false};
for (int i = pos1; i <= pos2; i++) {
c1[i] = p1[i];
vis[c1[i]] = true;
c2[i] = p2[i];
vis[c2[i]] = true;
}
int p = pos2 + 1;
for (int i = pos2 + 1; i < N; i++) {
while (vis[p]) {
p = (p + 1) % N;
}
c1[i] = p2[i];
c2[i] = p1[i];
vis[c1[i]] = true;
vis[c2[i]] = true;
p = (p + 1) % N;
}
for (int i = 0; i < pos1; i++) {
while (vis[p]) {
p = (p + 1) % N;
}
c1[i] = p2[i];
c2[i] = p1[i];
vis[c1[i]] = true;
vis[c2[i]] = true;
p = (p + 1) % N;
}
}
//变异操作(交换变异)
void mutation(int *p)
{
for (int i = 0; i < N; i++) {
if ((double)rand() / RAND_MAX < MUTATION_RATE) {
int j = rand() % N;
swap(p[i], p[j]);
}
}
}
//进化操作
void evolve()
{
int new_pop[POP_SIZE][N];
int idx = 0;
while (idx < POP_SIZE) {
int p1 = select();
int p2 = select();
if ((double)rand() / RAND_MAX < CROSSOVER_RATE) {
crossover(pop[p1], pop[p2], new_pop[idx], new_pop[idx + 1]);
idx += 2;
} else {
copy(pop[p1], pop[p1] + N, new_pop[idx]);
copy(pop[p2], pop[p2] + N, new_pop[idx + 1]);
idx += 2;
}
}
for (int i = 0; i < POP_SIZE; i++) {
mutation(new_pop[i]);
copy(new_pop[i], new_pop[i] + N, pop[i]);
}
}
//选择最优个体
void select_best()
{
best_idx = 0;
for (int i = 1; i < POP_SIZE; i++) {
if (fitness[i] > fitness[best_idx]) {
best_idx = i;
}
}
}
//输出最优路径
void output_best_path()
{
copy(pop[best_idx], pop[best_idx] + N, best_path);
cout << "Best path: ";
for (int i = 0; i < N; i++) {
cout << best_path[i] << " ";
}
cout << best_path[0] << endl;
}
int main()
{
init_city();
init_pop();
calc_pop_fitness();
for (int i = 0; i < MAX_GEN; i++) {
evolve();
calc_pop_fitness();
select_best();
cout << "Generation " << i << ": " << 1.0 / fitness[best_idx] << endl;
}
output_best_path();
return 0;
}
```
这个示例代码中,采用顺序交叉和交换变异作为遗传算法的操作。计算适应度的方法是计算路径长度的倒数,因为TSP问题是求解最短路径问题,所以路径长度越短的个体越优秀。轮盘赌算法用于选择操作,选择最优个体的方法是找出所有个体中适应度最高的个体。
阅读全文