用python编写某品牌手机图片爬虫和评论数据分析,并进行数据获取:采集京东某品牌手机评论数据,数据预处理,可视化分析,图形用户界面,数据存取:使用txt/csv/excel等

时间: 2024-04-05 21:34:32 浏览: 144
ZIP

精选_基于python实现的某东手机评论数据采集与分析爬虫_源码打包

star5星 · 资源好评率100%
好的,这是一个比较复杂的项目,需要分为多个步骤来完成。下面是一个简要的流程: 1. 确定爬取的手机品牌,使用 Python 的 requests 库和 BeautifulSoup 库爬取京东手机评论数据。可以使用以下代码: ```python import requests from bs4 import BeautifulSoup url = "https://sclub.jd.com/comment/productPageComments.action?productId=123456&score=0&sortType=5&page=0&pageSize=10" headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3"} response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, "html.parser") ``` 其中,将上面的 url 中的 productId 替换为要爬取的手机品牌的 ID。 2. 解析评论数据,提取有用的信息。可以使用以下代码: ```python comments = soup.find_all("div", class_="comment-item") for comment in comments: user_name = comment.find("div", class_="user-info").find("a").text.strip() content = comment.find("div", class_="comment-content").find("p").text.strip() score = comment.find("div", class_="comment-star").find("i")["class"][1][-1] time = comment.find("div", class_="comment-op").find_all("span")[1].text.strip() ``` 其中,user_name 表示用户名,content 表示评论内容,score 表示评分,time 表示评论时间。 3. 数据预处理,例如去除停用词、分词等。可以使用 jieba 库进行中文分词,使用以下代码: ```python import jieba jieba.set_dictionary("dict.txt.big") comment_list = [] for comment in comments: content = comment.find("div", class_="comment-content").find("p").text.strip() seg_list = jieba.cut(content, cut_all=False) comment_list.append(" ".join(seg_list)) ``` 其中,dict.txt.big 是 jieba 带的中文分词词典。 4. 进行数据分析,例如情感分析、词频统计等。可以使用情感分析库 TextBlob 进行情感分析,使用以下代码: ```python from textblob import TextBlob positive_count = 0 negative_count = 0 neutral_count = 0 for comment in comment_list: blob = TextBlob(comment) if blob.sentiment.polarity > 0: positive_count += 1 elif blob.sentiment.polarity < 0: negative_count += 1 else: neutral_count += 1 ``` 其中,positive_count 表示积极评论数量,negative_count 表示消极评论数量,neutral_count 表示中性评论数量。 5. 进行可视化分析,例如绘制词云图、条形图等。可以使用词云库 wordcloud 和绘图库 matplotlib 进行可视化分析,使用以下代码: ```python from wordcloud import WordCloud import matplotlib.pyplot as plt comment_text = " ".join(comment_list) wordcloud = WordCloud(background_color="white", width=800, height=400, max_words=100, font_path="msyh.ttc").generate(comment_text) plt.imshow(wordcloud, interpolation='bilinear') plt.axis("off") plt.show() ``` 其中,msyh.ttc 是字体文件,用于绘制中文词云。 6. 使用 PyQT5 库构建图形用户界面,方便用户输入爬取的手机品牌和保存的文件名等信息,使用以下代码: ```python from PyQt5 import QtWidgets, QtGui, QtCore class MainWindow(QtWidgets.QWidget): def __init__(self): super().__init__() self.setWindowTitle("手机评论数据分析") self.resize(400, 300) self.brand_label = QtWidgets.QLabel("手机品牌") self.brand_edit = QtWidgets.QLineEdit() self.file_label = QtWidgets.QLabel("保存文件名") self.file_edit = QtWidgets.QLineEdit() self.start_button = QtWidgets.QPushButton("开始爬取") self.start_button.clicked.connect(self.start_crawl) layout = QtWidgets.QVBoxLayout() layout.addWidget(self.brand_label) layout.addWidget(self.brand_edit) layout.addWidget(self.file_label) layout.addWidget(self.file_edit) layout.addWidget(self.start_button) self.setLayout(layout) def start_crawl(self): brand = self.brand_edit.text() file_name = self.file_edit.text() # 爬取和分析数据的代码 # ... if __name__ == "__main__": app = QtWidgets.QApplication([]) window = MainWindow() window.show() app.exec_() ``` 其中,MainWindow 类继承自 QWidget 类,实现了图形用户界面的各个部分,start_crawl 方法用于处理用户输入的信息并调用爬取和分析数据的代码。 7. 使用 pandas 库将数据存储到 txt/csv/excel 等文件中,使用以下代码: ```python import pandas as pd df = pd.DataFrame({"user_name": user_names, "content": comment_list, "score": scores, "time": times}) df.to_csv(file_name + ".csv", index=False) ``` 其中,user_names、comment_list、scores 和 times 分别表示用户名、评论内容、评分和评论时间,df 表示将这些数据存储到一个 DataFrame 中,to_csv 方法将 DataFrame 存储到 csv 文件中。可以将 to_csv 替换为 to_excel、to_json 等方法,根据需要将数据存储到不同格式的文件中。 以上是一个简要的流程,实际上还需要考虑一些细节问题,例如反爬虫、数据清洗等。同时,需要根据具体需求进行修改和优化。
阅读全文

相关推荐

zip
随着科技的不断进步,我们的生活变得越来越离不开各种各样的程序。程序已成为我们日常生活和工作中不可或缺的一部分,它们可以帮助我们更高效地完成任务,节省时间和精力。今天,我要向大家介绍一款功能强大、用途广泛的程序,它具有万金油般的能力,可以为我们的生活带来极大的便利。 首先,这款程序具有非常强大的功能。它不仅可以帮助我们完成日常的文字处理、数据分析和报表制作等任务,还支持各种格式的文件读取和编辑。同时,它还具有多种工具和插件,可以扩展其功能,满足我们不同的需求。无论是工作还是生活,这款程序都能帮助我们轻松应对各种挑战。 其次,这款程序的界面设计非常友好。它的界面简洁明了,操作简单易懂,即使是不熟悉电脑操作的人也可以轻松上手。同时,它还支持自定义快捷键和界面主题,可以让我们根据自己的习惯和喜好进行个性化设置。 此外,这款程序还具有出色的稳定性和安全性。它采用了先进的技术和算法,可以保护我们的文件和数据安全。同时,它还支持自动备份和恢复功能,即使出现意外情况,也可以帮助我们快速恢复到之前的状态。 总之,这款程序就像生活中的万金油一样,具有广泛的应用场景和多种功能。它可以为我们的生活和工作带来便利和效率,帮助我们更好地应对各种挑战。如果您还在为处理各种任务而烦恼,不妨尝试一下这款程序,或许它会成为您的得力助手。

最新推荐

recommend-type

python数据预处理 :样本分布不均的解决(过采样和欠采样)

在机器学习领域,数据预处理是至关重要的一步,特别是面对样本分布不均衡的情况。样本分布不均是指在数据集中,不同类别的样本数量相差悬殊,例如在一个有1000条数据的集合中,某一类别只有10条样本,这会使得训练的...
recommend-type

Python数据分析基础:异常值检测和处理

异常值检测和处理是数据分析和机器学习中的关键环节,它涉及到对数据集中异常或极端值的识别和管理。异常值可能会对模型的训练和预测性能产生显著影响,因此理解和掌握有效的异常值检测方法至关重要。 首先,异常值...
recommend-type

使用python获取csv文本的某行或某列数据的实例

在Python编程中,处理CSV文件是一项常见的任务,特别是在数据分析和数据清洗方面。CSV(逗号分隔值)文件是一种简单且普遍使用的格式,用于存储表格数据。本篇将详细介绍如何使用Python内置的`csv`模块来获取CSV文件...
recommend-type

python数据预处理 :数据共线性处理详解

数据预处理是数据分析过程中的关键步骤,特别是在使用机器学习算法时。共线性问题,特别是在Python数据预处理中,是一个常见的挑战,它涉及到输入变量之间的高度线性相关性。共线性可能导致模型的不稳定性和预测准确...
recommend-type

Python爬虫进阶之多线程爬取数据并保存到数据库

今天刚看完崔大佬的《python3网络爬虫开发实战》,顿时觉得自己有行了,准备用appium登录QQ爬取列表中好友信息,接踵而来的是一步一步的坑,前期配置无数出错,安装之后连接也是好多错误,把这些错误解决之后,找APP...
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。