利用pytorch实现推荐算法AFM
时间: 2023-06-23 10:08:22 浏览: 226
AFM(Attentional Factorization Machines)是一种结合了因子分解机(Factorization Machines)和注意力机制(Attention Mechanism)的推荐算法。它的目的是在因子分解机的基础上引入注意力机制,从而提高推荐系统的效果。下面是利用 PyTorch 实现 AFM 的基本步骤:
首先,需要导入所需的库和数据集。例如:
```
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from sklearn.model_selection import train_test_split
import pandas as pd
# 读取数据集
data = pd.read_csv('data.csv')
```
然后,需要对数据进行预处理,包括将类别特征进行 one-hot 编码、将数值特征进行归一化等。例如:
```
# 对类别特征进行 one-hot 编码
cat_cols = ['user_id', 'item_id', 'genre']
for col in cat_cols:
data[col] = data[col].astype('category')
data = pd.get_dummies(data, columns=cat_cols)
# 对数值特征进行归一化
num_cols = ['age', 'rating']
for col in num_cols:
min_val = data[col].min()
max_val = data[col].max()
data[col] = (data[col] - min_val) / (max_val - min_val)
```
接下来,需要将数据集划分为训练集和测试集,并将其转换为 PyTorch 的 Dataset 和 DataLoader。例如:
```
# 划分训练集和测试集
train_data, test_data = train_test_split(data, test_size=0.2)
# 将数据集转换为 PyTorch 的 Dataset
class AFMDataset(Dataset):
def __init__(self, data):
self.X = torch.tensor(data.drop('rating', axis=1).values, dtype=torch.float32)
self.y = torch.tensor(data['rating'].values, dtype=torch.float32)
def __len__(self):
return len(self.X)
def __getitem__(self, idx):
return self.X[idx], self.y[idx]
train_dataset = AFMDataset(train_data)
test_dataset = AFMDataset(test_data)
# 将数据集转换为 PyTorch 的 DataLoader
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
```
然后,需要定义 AFM 模型。AFM 模型由两个部分组成:FM 层和注意力层。FM 层用于学习特征之间的交互关系,注意力层用于计算每个特征的权重。例如:
```
class FM(nn.Module):
def __init__(self, num_features):
super().__init__()
self.num_features = num_features
self.w = nn.Parameter(torch.randn(num_features))
self.bias = nn.Parameter(torch.randn(1))
def forward(self, x):
interactions = torch.sum(torch.mm(x, x.t()) * self.w, dim=1)
return interactions + self.bias
class Attention(nn.Module):
def __init__(self, num_features):
super().__init__()
self.num_features = num_features
self.W = nn.Parameter(torch.randn(num_features, num_features))
self.bias = nn.Parameter(torch.randn(1))
def forward(self, x):
scores = torch.mm(x, self.W)
scores = torch.mm(scores, x.t())
scores = nn.functional.softmax(scores, dim=1)
outputs = torch.mm(scores, x)
return outputs + self.bias
class AFM(nn.Module):
def __init__(self, num_features):
super().__init__()
self.fm = FM(num_features)
self.attention = Attention(num_features)
def forward(self, x):
fm_output = self.fm(x)
attention_output = self.attention(x)
output = fm_output + attention_output
return torch.sigmoid(output)
```
最后,需要定义损失函数和优化器,并训练模型。例如:
```
# 定义损失函数和优化器
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 训练模型
model = AFM(num_features=train_data.shape[1]-1)
for epoch in range(10):
for i, (inputs, targets) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
# 计算测试集上的准确率
correct = 0
total = 0
with torch.no_grad():
for inputs, targets in test_loader:
outputs = model(inputs)
predicted = torch.round(outputs)
total += targets.size(0)
correct += (predicted == targets).sum().item()
accuracy = correct / total
print(f'Epoch {epoch+1}, Test Accuracy: {accuracy:.2f}')
```
通过以上步骤,就可以利用 PyTorch 实现 AFM 推荐算法了。
阅读全文