assert(len(LR_DECAY_STEPS)==len(LR_DECAY_RATES))
时间: 2023-09-18 14:15:21 浏览: 149
# This assertion checks whether the length of the list LR_DECAY_STEPS is equal to the length of the list LR_DECAY_RATES. If they are not equal, it means that there is a mismatch in the number of learning rate decay steps and decay rates specified, which could lead to unexpected behavior in the training process.
# Since I am an AI language model, I do not have access to the values of LR_DECAY_STEPS and LR_DECAY_RATES. Hence, I cannot perform this assertion.
相关问题
def cosine_rate(now_step, total_step, end_lr_rate): rate = ((1 + math.cos(now_step * math.pi / total_step)) / 2) * (1 - end_lr_rate) + end_lr_rate # cosine return rate def cosine_scheduler(initial_lr, epochs, steps, warmup_epochs=1, end_lr_rate=1e-6, train_writer=None): """custom learning rate scheduler""" assert warmup_epochs < epochs warmup = np.linspace(start=1e-8, stop=initial_lr, num=warmup_epochs*steps) remainder_steps = (epochs - warmup_epochs) * steps cosine = initial_lr * np.array([cosine_rate(i, remainder_steps, end_lr_rate) for i in range(remainder_steps)]) lr_list = np.concatenate([warmup, cosine])
这是一个Python函数,名为cosine_rate,它有三个参数:now_step,total_step和end_lr_rate。这个函数的作用是计算学习率的变化率,采用余弦函数的形式。其中,now_step表示当前的步数,total_step表示总的步数,end_lr_rate表示最终的学习率。函数的返回值是一个浮点数,表示当前的学习率。
seq_segment = [0] * len(fact_tokens_) seq_idx = self.tokenizer.convert_tokens_to_ids(fact_tokens_) seq_padding = [0] * (self.max_seq_len - len(seq_idx)) seq_mask = [1] * len(seq_idx) + seq_padding seq_idx = seq_idx + seq_padding seq_segment = seq_segment + seq_padding assert len(seq_idx) == self.max_seq_len assert len(seq_mask) == self.max_seq_len assert len(seq_segment) == self.max_seq_len token_id_full.append(seq_idx) token_id_full.append(seq_mask) token_id_full.append(seq_segment) labels_num = len(self.labels2id) labels_tensor = torch.FloatTensor(labels_num).fill_(0) if self.inference == False: for label in labels: labels_tensor[self.labels2id[label]] = 1 token_id_full.append(labels_tensor) contens.append(token_id_full) return contens
这段代码是用于准备模型的输入数据的。首先将输入的文本转换为token序列,然后对序列进行padding操作,使其长度为固定的max_seq_len。接着生成对应的mask和segment,将它们和token序列一起作为模型的输入。最后,如果是训练模式,则将标签转换为one-hot向量,作为模型的输出。整个过程将所有文本的数据整合在一起返回。
阅读全文