用Python实现用支持向量机辨别手写数字识别的算法
时间: 2023-06-16 19:04:42 浏览: 113
python使用支持向量机算法实现0-9数字识别的app
好的,以下是用Python实现用支持向量机辨别手写数字识别的算法的步骤:
1. 导入需要的库和数据集
```python
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
import matplotlib.pyplot as plt
# 导入手写数字数据集
digits = datasets.load_digits()
X = digits.data
y = digits.target
```
2. 数据集的拆分
将数据集分为训练集和测试集,以便我们可以测试模型的准确性。
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```
3. 创建SVM模型
```python
# 创建SVM模型
model = svm.SVC(kernel='linear')
```
4. 训练模型
```python
# 训练模型
model.fit(X_train, y_train)
```
5. 测试模型
```python
# 预测测试集
y_pred = model.predict(X_test)
# 模型准确性
accuracy = model.score(X_test, y_test)
print('模型准确性:', accuracy)
```
6. 可视化预测结果
```python
# 可视化预测结果
fig, axes = plt.subplots(4, 4, figsize=(10, 10))
for ax, image, prediction in zip(axes.flatten(), X_test, y_pred):
ax.set_axis_off()
image = image.reshape(8, 8)
ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
ax.set_title(f'Prediction: {prediction}')
plt.show()
```
完整代码如下:
```python
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
import matplotlib.pyplot as plt
# 导入手写数字数据集
digits = datasets.load_digits()
X = digits.data
y = digits.target
# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 创建SVM模型
model = svm.SVC(kernel='linear')
# 训练模型
model.fit(X_train, y_train)
# 预测测试集
y_pred = model.predict(X_test)
# 模型准确性
accuracy = model.score(X_test, y_test)
print('模型准确性:', accuracy)
# 可视化预测结果
fig, axes = plt.subplots(4, 4, figsize=(10, 10))
for ax, image, prediction in zip(axes.flatten(), X_test, y_pred):
ax.set_axis_off()
image = image.reshape(8, 8)
ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
ax.set_title(f'Prediction: {prediction}')
plt.show()
```
阅读全文