1.加载CIFAR-10数据集; 2.定义模型,这里我们使用Pytorch内置的GoogLeNet网络结构; 3.定义损失函数,这里我们使用交叉熵loss函数; 4.定义优化器,这里我们使用SGD优化器,并设置学习率和动量; 5.开始训练模型:在每个epoch中循环遍历训练集,计算前向传播、损失函数和反向传播,然后更新参数; 6.测试模型:在测试集中运行模型并计算准确度。 写出每个步骤的相关代码
时间: 2023-12-14 19:38:52 浏览: 182
以下是每个步骤的相关代码:
1. 加载CIFAR-10数据集
```python
import torchvision.datasets as dset
import torchvision.transforms as transforms
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = dset.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)
testset = dset.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=128, shuffle=False, num_workers=2)
```
2. 定义模型
```python
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models.googlenet import googlenet
class GoogLeNet(nn.Module):
def __init__(self, num_classes=10):
super(GoogLeNet, self).__init__()
self.inception = googlenet(pretrained=False)
self.inception.fc = nn.Linear(1024, num_classes)
def forward(self, x):
x = self.inception(x)
return x
net = GoogLeNet()
```
3. 定义损失函数
```python
criterion = nn.CrossEntropyLoss()
```
4. 定义优化器
```python
import torch.optim as optim
learning_rate = 0.1
momentum = 0.9
optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=momentum)
```
5. 开始训练模型
```python
for epoch in range(100):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('[Epoch %d] loss: %.3f' % (epoch + 1, running_loss / len(trainloader)))
print('Finished Training')
```
6. 测试模型
```python
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %.2f %%' % (100 * correct / total))
```
阅读全文