function [wih,whj,sek,sumerror,error,st]=bp_erf_log(pp,tt,q,eta,alpha,tol,lamda)是什么意思
时间: 2023-07-27 13:20:13 浏览: 198
这是一个基于误差反向传播算法的神经网络模型的函数,其输入参数和输出参数的含义如下:
输入参数:
- pp:训练数据的输入,是一个矩阵,每一列表示一个训练样本的输入向量;
- tt:训练数据的输出,是一个矩阵,每一列表示一个训练样本的输出向量;
- q:隐层节点数,一个正整数;
- eta:学习率,一个正实数;
- alpha:动量因子,一个正实数;
- tol:误差容限,一个正实数;
- lamda:正则化参数,一个正实数。
输出参数:
- wih:输入层到隐层之间的权重矩阵;
- whj:隐层到输出层之间的权重矩阵;
- sek:每次迭代的误差值;
- sumerror:训练结束时的总误差值;
- error:训练样本的误差值;
- st:最后一次迭代时的隐层状态值。
相关问题
[Q,n]=size(pp);[Q,p]=size(tt); wih=2*rand(n+1,q)-1;whj=2*rand(q+1,p)-1; wih=0.5*wih;whj=0.5*whj; deltawih=zeros(n+1,q);deltawhj=zeros(q+1,p); deltawihold=zeros(n+1,q);deltawhjold=zeros(q+1,p); si=[ones(Q,1),pp]; D=tt; sh=[1,zeros(1,q)];sy=zeros(1,p); deltao=zeros(1,p);deltah=zeros(1,q+1); sumerror=2*tol;time=0;error=[];在matlab中的意思
这段代码主要用于初始化神经网络的权重矩阵和一些相关的变量,其中:
- [Q,n]=size(pp):获取输入数据矩阵pp的行数Q和列数n,即训练数据的样本数和输入特征数;
- [Q,p]=size(tt):获取输出数据矩阵tt的行数Q和列数p,即训练数据的样本数和输出特征数;
- wih=2*rand(n+1,q)-1:初始化输入层到隐层之间的权重矩阵wih,采用[-1,1]之间的随机值初始化;
- whj=2*rand(q+1,p)-1:初始化隐层到输出层之间的权重矩阵whj,采用[-1,1]之间的随机值初始化;
- wih=0.5*wih;whj=0.5*whj;:将权重矩阵缩小0.5倍,以加快收敛速度;
- deltawih=zeros(n+1,q);deltawhj=zeros(q+1,p); deltawihold=zeros(n+1,q);deltawhjold=zeros(q+1,p);:初始化权重矩阵的增量变量,用于动量法更新权重矩阵;
- si=[ones(Q,1),pp]:构造新的输入数据矩阵si,将每个输入向量的第一维设为1,用于计算偏置项的权重;
- D=tt;:将输出数据矩阵赋值给D;
- sh=[1,zeros(1,q)]:初始化隐层状态向量sh,将第一维设为1,用于计算偏置项的权重;
- sy=zeros(1,p):初始化输出状态向量sy;
- deltao=zeros(1,p);deltah=zeros(1,q+1);:初始化输出层和隐层的误差向量;
- sumerror=2*tol;time=0;error=[];:初始化误差值的相关变量。其中,sumerror用于表示总误差,tol是误差容限,time是迭代次数,error用于记录每次迭代的误差值。
import numpy import scipy.special class NeuralNetwork(): def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate): self.inodes=inputnodes self.hnodes=hiddennodes self.onodes=outputnodes self.lr=learningrate self.wih=numpy.random.normal(0.0,pow(self.hnodes,-0.5),(self.hnodes,self.inodes)) self.who=numpy.random.normal(0.0,pow(self.onodes,-0.5),(self.onodes,self.hnodes)) self.activation_function=lambda x:scipy.special.expit(x) pass def train(self,input_list,target_list): inputs=numpy.array(input_list,ndmin=2).T targets=numpy.array(target_list,ndmin=2).T hidden_inputs=numpy.dot(self.wih,inputs) hidden_outputs=self.activation_function(hidden_inputs) final_inputs=numpy.dot(self.who,hidden_outputs) final_outputs=self.activation_function(final_inputs) output_errors=targets-final_outputs hidden_errors=numpy.dot(self.who.T,output_errors) self.who+=self.lr*numpy.dot((output_errors*final_outputs*(1.0-final_outputs)),numpy.transpose(hidden_outputs)) self.wih+=self.lr*numpy.dot((hidden_errors*hidden_outputs*(1.0-hidden_outputs)),numpy.transpose(inputs)) pass def query(self,input_list): inputs=numpy.array(input_list,ndmin=2).T hidden_inputs=numpy.dot(self.wih,inputs) hidden_outputs=self.activation_function(hidden_inputs) final_inputs=numpy.dot(self.who,hidden_outputs) final_outputs=self.activation_function(final_inputs) return final_outputs print('n')写一下注释
以下是对代码的注释:
```python
import numpy
import scipy.special
class NeuralNetwork():
def __init__(self,inputnodes,hiddennodes,outputnodes,learningrate):
# 初始化神经网络的输入层、隐藏层、输出层的节点数以及学习率
self.inodes = inputnodes
self.hnodes = hiddennodes
self.onodes = outputnodes
self.lr = learningrate
# 初始化输入层到隐藏层和隐藏层到输出层的权重
# 对权重进行随机初始化,取值范围为均值为0,标准差为节点数的负平方根
self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.hnodes, self.inodes))
self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5), (self.onodes, self.hnodes))
# 定义激活函数为 sigmoid 函数
self.activation_function = lambda x: scipy.special.expit(x)
def train(self,input_list,target_list):
# 将输入列表和目标列表转换为二维数组
inputs = numpy.array(input_list, ndmin=2).T
targets = numpy.array(target_list, ndmin=2).T
# 计算隐藏层的输入和输出
hidden_inputs = numpy.dot(self.wih, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
# 计算输出层的输入和输出
final_inputs = numpy.dot(self.who, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
# 计算输出层误差和隐藏层误差
output_errors = targets - final_outputs
hidden_errors = numpy.dot(self.who.T, output_errors)
# 更新隐藏层到输出层和输入层到隐藏层的权重
self.who += self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs))
self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))
def query(self,input_list):
# 将输入列表转换为二维数组
inputs = numpy.array(input_list, ndmin=2).T
# 计算隐藏层的输入和输出
hidden_inputs = numpy.dot(self.wih, inputs)
hidden_outputs = self.activation_function(hidden_inputs)
# 计算输出层的输入和输出
final_inputs = numpy.dot(self.who, hidden_outputs)
final_outputs = self.activation_function(final_inputs)
# 返回最终输出
return final_outputs
# 创建神经网络实例
input_nodes = 3
hidden_nodes = 3
output_nodes = 3
learning_rate = 0.3
n = NeuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)
# 使用训练数据进行训练
training_data = [[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]
for data in training_data:
n.train(data, data)
# 使用测试数据进行测试
test_data = [0.2, 0.5, 0.8]
print(n.query(test_data))
```
这个神经网络实现了一个简单的自编码器,训练数据和测试数据都是由一些简单的数字组成。
阅读全文