强化学习中GLIE Monte-Carlo Control的GLIE是什么意思,跟单独的Monte-Carlo Control有什么区别
时间: 2023-09-24 22:02:25 浏览: 313
强化学习笔记(4)无模型控制Model-Free Control(On-policy learning, off-policy learning, GLIE, Sarsa, Q-learning)
GLIE是"Greedy in the Limit with Infinite Exploration"的缩写,意思是指在无限探索的情况下贪心地学习。GLIE Monte-Carlo Control是一种强化学习算法,它是单独的Monte-Carlo Control算法的改进版。
在单独的Monte-Carlo Control算法中,智能体在每个时间步都会随机选择一个行动,并根据这个行动得到回报,然后更新策略。这种方法的问题在于,在学习初期,由于策略的随机性,可能会导致智能体经过很多轮训练后仍然没有找到最优策略。
GLIE Monte-Carlo Control算法通过在学习初期增加探索来解决这个问题。在学习初期,智能体会以一定的概率随机选择行动,以便尽可能多地探索环境。随着学习的进行,这个概率会逐渐减小,直到最后变为0,此时智能体将完全采用贪心策略。
GLIE Monte-Carlo Control算法的优点在于,它可以保证最终找到最优策略,同时还能够在学习初期进行充分的探索。
阅读全文