用c++实现虚拟存储器实验:使用FIFO算法和最近最久未使用算法,模拟虚拟内存的页面调度和页面错误处理过程,比较不同算法的缺页率并显示输出调度过程、错误处理结果以及两个算法的缺页率

时间: 2024-04-03 20:36:40 浏览: 14
以下是使用FIFO算法和最近最久未使用算法实现虚拟存储器实验的C++代码。在本次实验中,我们使用一个整数向量表示内存页框,它的大小为3。我们还使用一个整数向量表示页面序列,它的大小为10,其中每个元素都是一个介于0和9之间的随机整数。在FIFO算法中,我们使用一个队列来维护内存页框,每次发生缺页时,我们将最老的页面弹出队列并将新页面推入队列。在最近最久未使用算法中,我们使用一个整数向量来存储当前内存页框中的页面,并记录每个页面最近一次被访问的时间。每次发生缺页时,我们选择最长时间未被访问的页面进行替换。 ```cpp #include <iostream> #include <vector> #include <queue> #include <algorithm> using namespace std; // FIFO算法 void fifo_algorithm(vector<int>& memory_frames, const vector<int>& page_sequence) { cout << "FIFO Algorithm" << endl; queue<int> page_queue; int page_faults = 0; for (int i = 0; i < page_sequence.size(); i++) { int page_number = page_sequence[i]; cout << "Accessing page " << page_number << endl; if (find(memory_frames.begin(), memory_frames.end(), page_number) == memory_frames.end()) { page_faults++; if (memory_frames.size() < 3) { memory_frames.push_back(page_number); page_queue.push(page_number); } else { int oldest_page = page_queue.front(); page_queue.pop(); auto it = find(memory_frames.begin(), memory_frames.end(), oldest_page); *it = page_number; page_queue.push(page_number); } cout << "Page fault occurred" << endl; } else { cout << "Page already in memory" << endl; } cout << "Current state of memory frames: "; for (auto frame : memory_frames) { cout << frame << " "; } cout << endl; } double page_fault_rate = (double)page_faults / page_sequence.size(); cout << "Page fault rate: " << page_fault_rate << endl; } // 最近最久未使用算法 void lru_algorithm(vector<int>& memory_frames, const vector<int>& page_sequence) { cout << "LRU Algorithm" << endl; vector<pair<int, int>> last_access_times(3); int page_faults = 0; for (int i = 0; i < page_sequence.size(); i++) { int page_number = page_sequence[i]; cout << "Accessing page " << page_number << endl; auto it = find(memory_frames.begin(), memory_frames.end(), page_number); if (it == memory_frames.end()) { page_faults++; if (memory_frames.size() < 3) { memory_frames.push_back(page_number); last_access_times[memory_frames.size() - 1] = {page_number, i}; } else { int lru_page_index = 0; for (int j = 1; j < last_access_times.size(); j++) { if (last_access_times[j].second < last_access_times[lru_page_index].second) { lru_page_index = j; } } memory_frames[lru_page_index] = page_number; last_access_times[lru_page_index] = {page_number, i}; } cout << "Page fault occurred" << endl; } else { int page_index = distance(memory_frames.begin(), it); last_access_times[page_index].second = i; cout << "Page already in memory" << endl; } cout << "Current state of memory frames: "; for (auto frame : memory_frames) { cout << frame << " "; } cout << endl; } double page_fault_rate = (double)page_faults / page_sequence.size(); cout << "Page fault rate: " << page_fault_rate << endl; } int main() { vector<int> memory_frames; vector<int> page_sequence = {3, 2, 0, 3, 4, 2, 3, 1, 0, 4}; fifo_algorithm(memory_frames, page_sequence); cout << endl; memory_frames.clear(); lru_algorithm(memory_frames, page_sequence); return 0; } ``` 在本代码中,我们使用了两个函数分别实现了FIFO算法和最近最久未使用算法。在主函数中,我们先使用FIFO算法运行一次实验,然后清除内存页框并使用LRU算法运行一次实验。在每个算法中,我们都输出了内存页框的当前状态,以及是否发生了页面缺失。最后,我们计算了每个算法的缺页率并将其输出。

相关推荐

最新推荐

recommend-type

页面置换算法FIFO:先进先出 NUR: 最近未使用算法

介绍LFU使用数据的访问频率,有利于数据的总体优化使用,但不利于数据访问方式的变化和猝发访问.LRU依据最近一次的访问时间,能较好地适应数据访问的变化,但只是在访问时间上的局部优化,没有考虑数据长期的访问...
recommend-type

操作系统实验——存储管理(FIFO)算法实现

目的 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。 本实验的目的是通过请求...模拟页式虚拟存储管理中硬件的地址转换和缺页中断,并用先进先出调度算法(FIFO)处理缺页中断。
recommend-type

操作系统-页面置换算法的模拟实现及命中率对比

实验报告 内涵代码(1)、通过请求页式管理方式中页面置换算法的模拟设计,了解虚拟存储 术的特点,掌握请求页式存储管理中的页面置换算法。 (2)、课程设计内容 模拟实现OPT(最佳置换)、FIFO和LRU算法,并计算...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

可见光定位LED及其供电硬件具体型号,广角镜头和探测器,实验设计具体流程步骤,

1. 可见光定位LED型号:一般可使用5mm或3mm的普通白色LED,也可以选择专门用于定位的LED,例如OSRAM公司的SFH 4715AS或Vishay公司的VLMU3500-385-120。 2. 供电硬件型号:可以使用常见的直流电源供电,也可以选择专门的LED驱动器,例如Meanwell公司的ELG-75-C或ELG-150-C系列。 3. 广角镜头和探测器型号:一般可采用广角透镜和CMOS摄像头或光电二极管探测器,例如Omron公司的B5W-LA或Murata公司的IRS-B210ST01。 4. 实验设计流程步骤: 1)确定实验目的和研究对象,例如车辆或机器人的定位和导航。
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这