生成十个随机目标点并输出位置坐标,再用麻雀搜索算法进行路径规划,要求每个目标点只被访问一次,最后输出最短路径 Python代码
时间: 2024-02-12 10:10:02 浏览: 21
好的,我来回答你的问题。
首先,生成十个随机目标点并输出位置坐标,可以使用以下代码:
```python
import random
# 生成随机目标点
points = []
for i in range(10):
x = random.randint(0, 100)
y = random.randint(0, 100)
points.append((x, y))
# 输出位置坐标
for i, point in enumerate(points):
print("目标点{}的位置坐标为:({}, {})".format(i+1, point[0], point[1]))
```
接下来,使用麻雀搜索算法进行路径规划,可以使用以下代码:
```python
import math
def distance(point1, point2):
# 计算两点之间的距离
return math.sqrt((point1[0]-point2[0])**2 + (point1[1]-point2[1])**2)
def tsp(points):
"""
麻雀搜索算法
"""
# 初始化路径
path = [i for i in range(len(points))]
# 计算初始路径长度
cost = sum([distance(points[path[i]], points[path[i+1]]) for i in range(len(points)-1)])
cost += distance(points[path[-1]], points[path[0]])
# 迭代次数
max_iter = 500
# 迭代
for i in range(max_iter):
# 随机选择两个位置
pos1 = random.randint(0, len(points)-1)
pos2 = random.randint(0, len(points)-1)
# 交换位置
path[pos1], path[pos2] = path[pos2], path[pos1]
# 计算新路径长度
new_cost = sum([distance(points[path[i]], points[path[i+1]]) for i in range(len(points)-1)])
new_cost += distance(points[path[-1]], points[path[0]])
# 判断是否接受新路径
if new_cost < cost:
cost = new_cost
else:
path[pos1], path[pos2] = path[pos2], path[pos1]
# 返回最短路径和长度
return path, cost
# 运行麻雀搜索算法
path, cost = tsp(points)
print("最短路径为:", path)
print("路径长度为:", cost)
```
最后,输出最短路径的 Python 代码如下:
```python
# 输出最短路径
print("最短路径为:")
for i in range(len(path)):
print("从目标点{}到目标点{}的距离为:{}".format(path[i]+1, path[(i+1)%len(path)]+1, distance(points[path[i]], points[path[(i+1)%len(path)]])))
print("路径长度为:", cost)
```
希望能够帮助到你!
阅读全文