pythpn语言代码实现HMM中文分词
时间: 2023-05-16 19:07:38 浏览: 120
以下是一个简单的 Python 代码实现 HMM 中文分词的示例:
```python
import numpy as np
# 定义 HMM 模型参数
# 状态集合
states = ['B', 'M', 'E', 'S']
# 观测集合
observations = ['我', '爱', '中', '国']
# 初始概率
start_prob = {'B': 0.5, 'M': 0, 'E': 0, 'S': 0.5}
# 转移概率
trans_prob = {
'B': {'B': 0.1, 'M': 0.3, 'E': 0.6, 'S': 0},
'M': {'B': 0, 'M': 0.2, 'E': 0.7, 'S': 0.1},
'E': {'B': 0, 'M': 0, 'E': 0.1, 'S': 0.9},
'S': {'B': 0.4, 'M': 0.1, 'E': 0.4, 'S': 0.1}
}
# 发射概率
emit_prob = {
'B': {'我': 0.5, '爱': 0.1, '中': 0.1, '国': 0.3},
'M': {'我': 0.1, '爱': 0.4, '中': 0.4, '国': 0.1},
'E': {'我': 0.3, '爱': 0.1, '中': 0.1, '国': 0.5},
'S': {'我': 0.7, '爱': 0.1, '中': 0.1, '国': 0.1}
}
# 定义前向算法函数
def forward(obs):
T = len(obs)
alpha = np.zeros((T, len(states)))
# 初始化
for i, state in enumerate(states):
alpha[0, i] = start_prob[state] * emit_prob[state].get(obs[0], 0)
# 递推
for t in range(1, T):
for i, state in enumerate(states):
alpha[t, i] = emit_prob[state].get(obs[t], 0) * np.sum(alpha[t-1] * np.array([trans_prob[s].get(state, 0) for s in states]))
return alpha
# 定义后向算法函数
def backward(obs):
T = len(obs)
beta = np.zeros((T, len(states)))
# 初始化
beta[T-1] = 1
# 递推
for t in range(T-2, -1, -1):
for i, state in enumerate(states):
beta[t, i] = np.sum(np.array([trans_prob[state].get(s, 0) * emit_prob[s].get(obs[t+1], 0) * beta[t+1, j] for j, s in enumerate(states)]))
return beta
# 定义维特比算法函数
def viterbi(obs):
T = len(obs)
delta = np.zeros((T, len(states)))
psi = np.zeros((T, len(states)), dtype=int)
# 初始化
for i, state in enumerate(states):
delta[0, i] = start_prob[state] * emit_prob[state].get(obs[0], 0)
# 递推
for t in range(1, T):
for i, state in enumerate(states):
delta[t, i] = emit_prob[state].get(obs[t], 0) * np.max(delta[t-1] * np.array([trans_prob[s].get(state, 0) for s in states]))
psi[t, i] = np.argmax(delta[t-1] * np.array([trans_prob[s].get(state, 0) for s in states]))
# 回溯
path = [np.argmax(delta[T-1])]
for t in range(T-2, -1, -1):
path.insert(0, psi[t+1, path[0]])
return path
# 测试
obs = '我爱中国'
alpha = forward(obs)
beta = backward(obs)
gamma = alpha * beta / np.sum(alpha * beta, axis=1, keepdims=True)
path = viterbi(obs)
print('前向概率矩阵:\n', alpha)
print('后向概率矩阵:\n', beta)
print('状态概率矩阵:\n', gamma)
print('最优路径:', ''.join([states[i] for i in path]))
```
这个示例中,我们使用了 HMM 模型来进行中文分词。HMM 模型包括状态集合、观测集合、初始概率、转移概率和发射概率。我们使用前向算法、后向算法和维特比算法来计算概率矩阵和最优路径。
阅读全文