ESP32与stm32通信代码

时间: 2023-08-15 20:07:57 浏览: 59
ESP32和STM32之间可以通过多种方式进行通信,比如UART,SPI,I2C等。这里给出一种使用UART通信的示例代码: ESP32端代码: ``` #include <HardwareSerial.h> HardwareSerial Serial2(2); // 使用UART2作为串口 void setup() { Serial.begin(115200); Serial2.begin(115200, SERIAL_8N1, 16, 17); // 配置UART2 } void loop() { Serial2.print("Hello STM32!\n"); // 发送数据到STM32 delay(1000); } ``` STM32端代码: ``` #include <HardwareSerial.h> HardwareSerial Serial2(USART2); // 使用USART2作为串口 void setup() { Serial.begin(115200); Serial2.begin(115200); // 配置USART2 } void loop() { if(Serial2.available()) { Serial.print(Serial2.readString()); // 读取ESP32发送的数据 } } ``` 需要注意的是,ESP32和STM32之间的UART通信需要配置相同的波特率和数据格式(如数据位、停止位、校验位等)。在ESP32端代码中,我们使用了UART2作为串口,并将其配置为115200波特率、8位数据位、无校验位、1位停止位。在STM32端代码中,我们使用了USART2作为串口,并将其配置为相同的波特率和数据格式。 另外,ESP32和STM32之间的通信也可以使用其他的接口,如SPI和I2C。具体的实现方式可以参考官方文档和示例代码。

相关推荐

esp32与stm32串口通信的方法是将两者的串口进行连接。在esp32的代码中,可以使用Serial2来初始化和操作串口2,将接收到的数据通过Serial2.printf发送给stm32。同时,可以使用Serial来打印数据在电脑上进行调试。在stm32的代码中,可以使用相应的串口进行接收esp32发送的数据。通过这种方式,可以实现esp32与stm32之间的串口通信。\[1\]\[2\] #### 引用[.reference_title] - *1* [stm32和esp32通信实现蓝牙传输与手机通信](https://blog.csdn.net/leva345/article/details/121612825)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [ESP32 与 STM32 串口通信](https://blog.csdn.net/qq_67301179/article/details/128884211)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [STM32开发——串口通讯(第2篇)——WIFI(Esp8266)](https://blog.csdn.net/m0_67794575/article/details/131208021)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
### 回答1: 使用STM32和ESP32进行串口通信,需要使用UART接口,并配置好波特率、数据位、停止位和校验位。在STM32和ESP32上都需要使用UART_Read()和UART_Write()函数来读取和发送数据。 ### 回答2: ESP32和STM32是两种常用的嵌入式开发板,它们之间可以通过串口实现通信,下面是具体的串口通信写法。 首先,需要确定使用的串口通信协议,包括波特率、数据位、校验位、停止位等参数设置。 对于ESP32,使用Arduino语言进行开发时,可以使用Serial.begin(baudRate)函数初始化串口,并通过Serial.print()和Serial.read()函数实现发送和接收数据。 对于STM32,使用STM32CubeMX或者直接在Keil等IDE中进行开发时,可以通过库函数进行串口的初始化和使用。使用HAL库函数中的HAL_UART_Init()函数可以初始化串口配置,并通过HAL_UART_Transmit()和HAL_UART_Receive()函数实现发送和接收数据。 在进行串口通信时,需要确保两个开发板的串口参数设置一致,包括波特率、数据位、校验位、停止位等参数。 例如,如果ESP32的串口设置为115200波特率、8位数据位、无校验位、1个停止位,而STM32的串口设置也为115200波特率、8位数据位、无校验位、1个停止位,那么它们之间可以进行串口通信。 在代码编写上,ESP32可以使用Serial.print()函数发送数据,通过Serial.available()函数判断是否有数据接收,再使用Serial.read()函数读取接收到的数据。 STM32可以使用HAL_UART_Transmit()函数发送数据,通过HAL_UART_Receive()函数接收数据。在接收数据时,可以使用HAL_UART_Receive_IT()函数进行中断接收,或者使用轮询方式通过HAL_UART_Receive()函数进行接收。 总之,ESP32和STM32通过串口通信需要确保串口参数设置一致,并根据不同的开发板选用相应的库函数进行开发。通过发送和接收函数来实现双方之间的数据交换。 ### 回答3: ESP32和STM32之间的串口通信可以通过以下步骤实现: 1. 检查并确保ESP32和STM32的串口引脚连接正确,例如ESP32的TX引脚连接到STM32的RX引脚,ESP32的RX引脚连接到STM32的TX引脚。同时,确保两个设备的电源接地也连接在一起。 2. 在ESP32上,使用Arduino或MicroPython等开发工具,通过编程配置串口。首先,需要包含串口库(例如Serial或UART)。 3. 在ESP32上设置串口的波特率(如9600、115200等),该波特率应与STM32上的设置保持一致。 4. 使用串口库中的相应函数(例如Serial.begin()或UART.init())初始化串口。 5. 在ESP32上使用串口库中的函数(例如Serial.write()或UART.write())将要发送给STM32的数据写入串口发送缓冲区。 6. 在STM32上,使用CubeMX等开发工具为串口功能配置引脚和参数。 7. 在STM32上使用HAL库或者ST公司提供的标准库函数,通过相应的初始化函数(例如HAL_UART_Init())初始化串口。 8. 在STM32上使用HAL库或者标准库函数,通过相应的发送函数(例如HAL_UART_Transmit())将接收到的数据发送到串口。 9. 在STM32上使用串口接收中断,以便在接收到ESP32发送的数据时触发相应的处理函数。 10. 通过串口接收和发送函数,以及接收中断处理函数,在ESP32和STM32之间实现双向的串口通信。 需要注意的是,在编写串口通信的代码实现中,需要确保两个设备的波特率、数据位、停止位和校验位等参数设置相匹配。 以上是关于ESP32与STM32串口通信的基本步骤和注意事项的简要介绍。具体的代码实现和细节还需要根据你所使用的具体开发工具和编程语言来确定。
以下是使用ESP8266和STM32的C语言代码实现串口通信: c #include <stdio.h> #include "stm32f4xx.h" #define ESP8266_BAUDRATE 9600 #define STM32_USART_BAUDRATE 115200 USART_InitTypeDef USART_InitStruct; void ESP8266_Init(void) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_Pin = GPIO_Pin_2; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_Pin = GPIO_Pin_3; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStruct); GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); USART_InitStruct.USART_BaudRate = ESP8266_BAUDRATE; USART_InitStruct.USART_WordLength = USART_WordLength_8b; USART_InitStruct.USART_StopBits = USART_StopBits_1; USART_InitStruct.USART_Parity = USART_Parity_No; USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStruct.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART2, &USART_InitStruct); USART_Cmd(USART2, ENABLE); } void STM32_USART_Init(void) { RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART3, ENABLE); GPIO_InitTypeDef GPIO_InitStruct; GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_Pin = GPIO_Pin_10; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStruct); GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStruct.GPIO_OType = GPIO_OType_PP; GPIO_InitStruct.GPIO_Pin = GPIO_Pin_11; GPIO_InitStruct.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOB, &GPIO_InitStruct); GPIO_PinAFConfig(GPIOB, GPIO_PinSource10, GPIO_AF_USART3); GPIO_PinAFConfig(GPIOB, GPIO_PinSource11, GPIO_AF_USART3); USART_InitStruct.USART_BaudRate = STM32_USART_BAUDRATE; USART_InitStruct.USART_WordLength = USART_WordLength_8b; USART_InitStruct.USART_StopBits = USART_StopBits_1; USART_InitStruct.USART_Parity = USART_Parity_No; USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStruct.USART_Mode = USART_Mode_Tx | USART_Mode_Rx; USART_Init(USART3, &USART_InitStruct); USART_Cmd(USART3, ENABLE); } void USART_SendChar(USART_TypeDef* USARTx, char ch) { while(USART_GetFlagStatus(USARTx, USART_FLAG_TXE) == RESET); USART_SendData(USARTx, ch); } void USART_SendString(USART_TypeDef* USARTx, const char *str) { while(*str) { USART_SendChar(USARTx, *str++); } } char USART_GetChar(USART_TypeDef* USARTx) { while(USART_GetFlagStatus(USARTx, USART_FLAG_RXNE) == RESET); return USART_ReceiveData(USARTx); } void USART_SendESPByte(uint8_t data) { USART_SendChar(USART2, (char)data); } uint8_t USART_GetESPByte(void) { return (uint8_t)USART_GetChar(USART2); } void USART_SendSTM32Byte(uint8_t data) { USART_SendChar(USART3, (char)data); } uint8_t USART_GetSTM32Byte(void) { return (uint8_t)USART_GetChar(USART3); } int main(void) { ESP8266_Init(); STM32_USART_Init(); while(1) { // STM32 -> ESP8266 uint8_t ch = USART_GetSTM32Byte(); USART_SendESPByte(ch); // ESP8266 -> STM32 ch = USART_GetESPByte(); USART_SendSTM32Byte(ch); } } 这个代码启用了stm32的USART3和ESP8266的USART2作为串口接口。它还实现了用于向ESP8266发送数据和从ESP8266接收数据的函数,以及用于向STM32发送数据和从STM32接收数据的函数。在主循环中,它无限循环,不停地从STM32读取一个字节,将其通过ESP8266发送出去,同时从ESP8266读取一个字节,并将其发送到STM32。
要实现ESP32CAM与STM32的串口通信,您可以按照以下步骤进行配置和编程: 1. 确保您已经准备好所需的硬件和开发环境,包括ESP-WROOM-32开发板和STM32F103C8T6单片机,以及Arduino IDE和keil MDK(5)开发环境。 2. 在ESP32的代码中,使用Serial2库初始化第二个串口,例如Serial2.begin(115200)。 3. 在ESP32的主循环中,使用Serial.available()检查串口0是否有数据可读取。 4. 如果有数据可读取,使用Serial.readString()读取串口0接收到的数据,并将其保存在一个变量中(例如readUART)。 5. 使用Serial2.printf()将读取到的数据发送给STM32,例如Serial2.printf("%s\r\n",readUART)。 6. 使用Serial.printf()将数据打印在电脑上进行调试,例如Serial.printf("%s\r\n",readUART)。 7. 在STM32的代码中,根据您的开发环境和需求使用相应的串口库进行初始化和通信。 请注意,以上代码仅为示例,您需要根据您的具体硬件和软件环境进行适当的调整和修改。另外,确保两个设备的波特率设置相同,例如115200。123 #### 引用[.reference_title] - *1* *2* *3* [ESP32 与 STM32 串口通信](https://blog.csdn.net/qq_67301179/article/details/128884211)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
以下是STM32与ESP8266串口通信的示例代码: c #include "stm32f4xx.h" #include <string.h> // 定义串口发送函数 void USART_SendData(USART_TypeDef* USARTx, uint16_t Data) { while((USARTx->SR&0X40)==0); //等待上一次数据发送完成 USARTx->DR = Data; //发送数据到USART数据寄存器 } // 定义串口接收函数 uint8_t USART_ReceiveData(USART_TypeDef* USARTx) { while((USARTx->SR&0X20)==0); //等待接收完成 return USARTx->DR; //返回接收到的数据 } // 定义发送AT指令函数 void ESP8266_SendAT(char *cmd) { while(*cmd) { USART_SendData(USART2, (uint8_t)(*cmd++)); } } int main(void) { RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE); //使能GPIOA时钟 RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); //使能USART2时钟 GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2 | GPIO_Pin_3; //PA2为USART2_TX,PA3为USART2_RX GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; //设置为复用功能 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //GPIO速度为50MHz GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //设置推挽输出 GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; //设置为无上下拉 GPIO_Init(GPIOA, &GPIO_InitStructure); //初始化GPIOA GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); //将PA2复用为USART2_TX GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); //将PA3复用为USART2_RX USART_InitTypeDef USART_InitStructure; USART_InitStructure.USART_BaudRate = 115200; //波特率设置为115200 USART_InitStructure.USART_WordLength = USART_WordLength_8b; //字长为8位数据格式 USART_InitStructure.USART_StopBits = USART_StopBits_1; //一个停止位 USART_InitStructure.USART_Parity = USART_Parity_No; //无奇偶校验位 USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; //无硬件数据流控制 USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; //收发模式 USART_Init(USART2, &USART_InitStructure); //初始化USART2 USART_Cmd(USART2, ENABLE); //使能USART2 char at_cmd[] = "AT\r\n"; //AT指令 ESP8266_SendAT(at_cmd); //发送AT指令 while(1) { if(USART_ReceiveData(USART2) == 'O') //等待ESP8266回复OK { if(USART_ReceiveData(USART2) == 'K') { char data[] = "Hello World!\r\n"; //发送数据 ESP8266_SendAT(data); break; } } } while(1); } 注意事项: 1. 在使用USART前,需要先使能相应的GPIO和USART的时钟。 2. 在GPIO初始化时,需要将对应的引脚配置为复用功能,并且选择相应的复用功能号。 3. 在USART初始化时,需要设置波特率、字长、停止位、校验位、数据流控制和收发模式等参数。 4. 在发送AT指令和数据时,需要使用USART_SendData函数发送数据。在接收ESP8266的回复时,需要使用USART_ReceiveData函数接收数据。
ESP8266和STM32L151可以通过串口进行通信。您可以将ESP8266的TX引脚连接到STM32L151的RX引脚,将ESP8266的RX引脚连接到STM32L151的TX引脚。然后,您可以使用STM32L151的UART接口来与ESP8266进行通信。您需要配置STM32L151的UART接口,以便发送和接收数据。下面是一个简单的示例代码,可以让STM32L151通过UART与ESP8266通信: c #include "stm32l1xx.h" #define UART_TX_PIN GPIO_Pin_2 #define UART_RX_PIN GPIO_Pin_3 void init_uart(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE); RCC_AHBPeriphClockCmd(RCC_AHBPeriph_GPIOA, ENABLE); GPIO_InitStructure.GPIO_Pin = UART_TX_PIN | UART_RX_PIN; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_40MHz; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; GPIO_Init(GPIOA, &GPIO_InitStructure); GPIO_PinAFConfig(GPIOA, GPIO_PinSource2, GPIO_AF_USART2); GPIO_PinAFConfig(GPIOA, GPIO_PinSource3, GPIO_AF_USART2); USART_InitStructure.USART_BaudRate = 115200; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_Init(USART2, &USART_InitStructure); USART_Cmd(USART2, ENABLE); } uint8_t uart_read_byte(void) { while (USART_GetFlagStatus(USART2, USART_FLAG_RXNE) == RESET); return USART_ReceiveData(USART2); } void uart_write_byte(uint8_t data) { while (USART_GetFlagStatus(USART2, USART_FLAG_TXE) == RESET); USART_SendData(USART2, data); } int main(void) { init_uart(); while (1) { // 从ESP8266读取数据 uint8_t data = uart_read_byte(); // 处理数据 // 发送数据到ESP8266 uart_write_byte(data); } } 请注意,此示例代码仅用于演示如何使用UART接口与ESP8266通信。您需要根据您的应用程序需求进行修改。

最新推荐

基础化工行业简评报告硫酸价格继续上行草甘膦价格回调-18页.pdf - 副本.zip

行业报告 文件类型:PDF格式 打开方式:直接解压,无需密码

2023她经济崛起:解码中国女性的购物秘密报告(英文版).pdf

2023她经济崛起:解码中国女性的购物秘密报告(英文版).pdf

基于matlab的最短路径算法源码.zip

基于matlab的源码参考学习使用。希望对你有所帮助

基于matlab的趋势移动平滑法源码.zip

基于matlab的源码参考学习使用。希望对你有所帮助

超声波雷达驱动(Elmos524.03&amp;Elmos524.09)

超声波雷达驱动(Elmos524.03&Elmos524.09)

ROSE: 亚马逊产品搜索的强大缓存

89→ROSE:用于亚马逊产品搜索的强大缓存Chen Luo,Vihan Lakshman,Anshumali Shrivastava,Tianyu Cao,Sreyashi Nag,Rahul Goutam,Hanqing Lu,Yiwei Song,Bing Yin亚马逊搜索美国加利福尼亚州帕洛阿尔托摘要像Amazon Search这样的产品搜索引擎通常使用缓存来改善客户用户体验;缓存可以改善系统的延迟和搜索质量。但是,随着搜索流量的增加,高速缓存不断增长的大小可能会降低整体系统性能。此外,在现实世界的产品搜索查询中广泛存在的拼写错误、拼写错误和冗余会导致不必要的缓存未命中,从而降低缓存 在本文中,我们介绍了ROSE,一个RO布S t缓存E,一个系统,是宽容的拼写错误和错别字,同时保留传统的缓存查找成本。ROSE的核心组件是一个随机的客户查询ROSE查询重写大多数交通很少流量30X倍玫瑰深度学习模型客户查询ROSE缩短响应时间散列模式,使ROSE能够索引和检

java中mysql的update

Java中MySQL的update可以通过JDBC实现。具体步骤如下: 1. 导入JDBC驱动包,连接MySQL数据库。 2. 创建Statement对象。 3. 编写SQL语句,使用update关键字更新表中的数据。 4. 执行SQL语句,更新数据。 5. 关闭Statement对象和数据库连接。 以下是一个Java程序示例,用于更新MySQL表中的数据: ```java import java.sql.*; public class UpdateExample { public static void main(String[] args) { String

JavaFX教程-UI控件

JavaFX教程——UI控件包括:标签、按钮、复选框、选择框、文本字段、密码字段、选择器等

社交网络中的信息完整性保护

141社交网络中的信息完整性保护摘要路易斯·加西亚-普埃约Facebook美国门洛帕克lgp@fb.com贝尔纳多·桑塔纳·施瓦茨Facebook美国门洛帕克bsantana@fb.com萨曼莎·格思里Facebook美国门洛帕克samguthrie@fb.com徐宝轩Facebook美国门洛帕克baoxuanxu@fb.com信息渠道。这些网站促进了分发,Facebook和Twitter等社交媒体平台在过去十年中受益于大规模采用,反过来又助长了传播有害内容的可能性,包括虚假和误导性信息。这些内容中的一些通过用户操作(例如共享)获得大规模分发,以至于内容移除或分发减少并不总是阻止其病毒式传播。同时,社交媒体平台实施解决方案以保持其完整性的努力通常是不透明的,导致用户不知道网站上发生的任何完整性干预。在本文中,我们提出了在Facebook News Feed中的内容共享操作中添加现在可见的摩擦机制的基本原理,其设计和实现挑战,以�

fluent-ffmpeg转流jsmpeg

以下是使用fluent-ffmpeg和jsmpeg将rtsp流转换为websocket流的示例代码: ```javascript const http = require('http'); const WebSocket = require('ws'); const ffmpeg = require('fluent-ffmpeg'); const server = http.createServer(); const wss = new WebSocket.Server({ server }); wss.on('connection', (ws) => { const ffmpegS