woa-lssvm回归预测
时间: 2023-10-01 16:06:02 浏览: 96
WOA-LSSVM是一种基于鲸鱼优化算法(Whale Optimization Algorithm, WOA)和局部支持向量机(Least Squares Support Vector Machine, LSSVM)的回归预测方法。
实现步骤如下:
1. 数据预处理:将数据集分为训练集和测试集。
2. 参数设置:设置WOA-LSSVM模型的参数,包括种群大小、最大迭代次数、收敛精度等。
3. WOA算法:使用WOA算法对LSSVM模型进行优化,得到最优的支持向量和相应的系数。
4. 模型训练:使用优化后的LSSVM模型对训练集进行训练,得到模型。
5. 模型预测:使用训练好的模型对测试集进行预测,得到预测结果。
6. 模型评估:使用评价指标(如均方误差、平均绝对误差等)评估模型的预测效果。
代码实现可以参考以下步骤:
1.导入必要的库和数据集
```
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_boston
data = load_boston()
X = data.data
y = data.target
```
2.数据标准化
```
scaler = StandardScaler()
X = scaler.fit_transform(X)
```
3.数据集划分
```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```
4.模型训练和预测
```
class WOA_LSSVM:
def __init__(self, population_size=10, max_iter=100, C=1.0, sigma=1.0, a=2.0):
self.population_size = population_size # 种群大小
self.max_iter = max_iter # 最大迭代次数
self.C = C # 正则化参数
self.sigma = sigma # 高斯核参数
self.a = a # 参数a
self.X_train = None
self.y_train = None
self.alpha = None
self.b = None
def woa(self, fitness_func):
# 初始化鲸鱼位置和速度
positions = np.random.uniform(low=-1, high=1, size=(self.population_size, self.alpha.shape[0]))
velocities = np.zeros_like(positions)
best_position = None
best_fitness = np.inf
for i in range(self.max_iter):
# 计算适应度值并更新最优位置
fitness = fitness_func(positions)
if np.min(fitness) < best_fitness:
best_fitness = np.min(fitness)
best_position = positions[np.argmin(fitness)]
a = 2 - i * ((2) / self.max_iter) # 更新参数a
# 更新速度和位置
for j in range(self.population_size):
r1, r2 = np.random.uniform(size=2)
A = 2 * a * r1 - a
C = 2 * r2
D = np.abs(C * best_position - positions[j])
velocities[j] = velocities[j] * self.a + A * D
positions[j] = positions[j] + velocities[j]
# 边界处理
positions[j] = np.clip(positions[j], -1, 1)
return best_position, best_fitness
def fit(self, X, y):
self.X_train = X
self.y_train = y
# 计算核矩阵
K = np.exp(-((X[:, np.newaxis] - X) ** 2).sum(axis=2) / (2 * self.sigma ** 2))
# 构建优化问题的矩阵形式
H = np.dot(K, K.T) + np.eye(X.shape[0]) / self.C
f = -y
A = y.reshape(1, -1)
b = np.array([0.0])
# 使用WOA算法优化问题
self.alpha, _ = self.woa(lambda x: np.array([np.dot(np.dot(x, H), x.T) / 2 + np.dot(f, x.T)]))
# 计算b
support_vector_indices = np.where(self.alpha > 1e-5)[0]
self.b = np.mean(y[support_vector_indices] - np.dot(K[support_vector_indices], self.alpha * y))
def predict(self, X):
# 计算核矩阵
K = np.exp(-((X[:, np.newaxis] - self.X_train) ** 2).sum(axis=2) / (2 * self.sigma ** 2))
return np.dot(K, self.alpha * self.y_train) + self.b
model = WOA_LSSVM(population_size=20, max_iter=100, C=1.0, sigma=1.0, a=2.0)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
```
5.模型评估
```
mse = mean_squared_error(y_test, y_pred)
mae = mean_absolute_error(y_test, y_pred)
print("MSE:", mse)
print("MAE:", mae)
```
6.可视化结果
```
plt.scatter(y_test, y_pred)
plt.plot([0, 50], [0, 50], '--k')
plt.xlabel('True Values')
plt.ylabel('Predictions')
plt.show()
```
这样就可以使用WOA-LSSVM进行回归预测了。
阅读全文