请用pytorch写出小波散射网络
时间: 2023-07-07 16:40:57 浏览: 282
好的,以下是使用PyTorch实现小波散射网络的代码:
```python
import torch
import torch.nn as nn
class Scattering(nn.Module):
def __init__(self, J, L):
super(Scattering, self).__init__()
self.J = J
self.L = L
self.filters = self.build_filters()
def build_filters(self):
filters = []
for j in range(0, self.J + 1):
filters.append(self.morlet_wavelet(j))
return filters
def morlet_wavelet(self, j):
scale = 2 ** j
B = 8 * scale / self.L
Q = 1 / (2 ** (j + 1))
x, y = torch.meshgrid(torch.linspace(-1, 1, self.L), torch.linspace(-1, 1, self.L))
r = torch.sqrt(x ** 2 + y ** 2)
f = torch.sin(B * r) * torch.exp(-Q * r ** 2)
f = f - torch.mean(f)
f = f / torch.norm(f)
return f.unsqueeze(0)
def conv_and_pool(self, x, filter):
conv = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=filter.shape[2], padding=1, stride=1)
conv.weight.data = filter
conv.bias.data.fill_(0)
y = conv(x)
y = nn.functional.avg_pool2d(y, kernel_size=2)
return y
def forward(self, x):
S = []
U = nn.functional.avg_pool2d(x, kernel_size=2)
S.append(self.conv_and_pool(U, self.filters[0]))
for j in range(1, self.J + 1):
V = self.conv_and_pool(U, self.filters[j])
W = nn.functional.avg_pool2d(V, kernel_size=2)
S.append(self.conv_and_pool(W, self.filters[j - 1]))
U = V
return torch.cat(S, dim=1)
```
其中,`Scattering`类定义了小波散射网络的结构,`J`和`L`分别表示小波散射网络的深度和输入图像的大小。`build_filters`方法用于构建小波滤波器,`morlet_wavelet`方法用于生成Morlet小波,并返回一个张量。`conv_and_pool`方法用于卷积和池化操作。`forward`方法将输入图像传递给小波散射网络,并返回小波散射系数。
阅读全文