在resnet50中如何利用pytorch对自己的二分类图像数据集进行smote算法解决样本不平衡并产出代码
时间: 2024-05-04 11:20:26 浏览: 217
在ResNet50中使用PyTorch进行二分类图像数据集的smote算法解决样本不平衡,可以按照以下步骤进行:
1. 首先,安装必要的库和包,包括PyTorch、sklearn和imblearn等。
```
!pip install torch sklearn imblearn
```
2. 加载二分类图像数据集,并且将其分成训练数据集和测试数据集。
```
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
from torchvision import transforms
data_transforms = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
train_dataset = ImageFolder('path/to/train', transform=data_transforms)
test_dataset = ImageFolder('path/to/test', transform=data_transforms)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)
```
3. 计算训练数据集中的类别数量,并且计算每个类别的权重。
```
from sklearn.utils.class_weight import compute_class_weight
classes = train_dataset.classes
class_weights = compute_class_weight('balanced', classes, train_dataset.targets)
```
4. 定义模型,并且使用交叉熵损失和优化器进行训练。
```
import torch.nn as nn
import torch.optim as optim
from torchvision.models import resnet50
model = resnet50(pretrained=True)
num_features = model.fc.in_features
model.fc = nn.Linear(num_features, len(classes))
criterion = nn.CrossEntropyLoss(weight=torch.tensor(class_weights).float())
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
for epoch in range(10):
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
5. 使用imblearn库中的SMOTE算法对训练数据集进行过采样,并且重新计算每个类别的权重。
```
from imblearn.over_sampling import SMOTE
X_train, y_train = train_dataset[:][0], train_dataset[:][1]
X_train = X_train.reshape(X_train.shape[0], -1)
smote = SMOTE(random_state=42)
X_train_smote, y_train_smote = smote.fit_resample(X_train, y_train)
X_train_smote = X_train_smote.reshape(X_train_smote.shape[0], 3, 224, 224)
class_weights_smote = compute_class_weight('balanced', classes, y_train_smote)
```
6. 将过采样后的数据集重新加载到DataLoader中,并且使用重新计算的权重重新训练模型。
```
from torch.utils.data import TensorDataset
train_dataset_smote = TensorDataset(torch.tensor(X_train_smote), torch.tensor(y_train_smote))
train_loader_smote = DataLoader(train_dataset_smote, batch_size=32, shuffle=True)
model_smote = resnet50(pretrained=True)
num_features = model_smote.fc.in_features
model_smote.fc = nn.Linear(num_features, len(classes))
criterion_smote = nn.CrossEntropyLoss(weight=torch.tensor(class_weights_smote).float())
optimizer_smote = optim.SGD(model_smote.parameters(), lr=0.001, momentum=0.9)
for epoch in range(10):
for inputs, labels in train_loader_smote:
optimizer_smote.zero_grad()
outputs = model_smote(inputs)
loss = criterion_smote(outputs, labels)
loss.backward()
optimizer_smote.step()
```
这样,就可以使用PyTorch和imblearn库中的SMOTE算法对自己的二分类图像数据集进行过采样,并且解决样本不平衡问题。
阅读全文