val res = df .select( to_date(to_timestamp($"InvoiceDate", "M/d/yyyy H:mm")).as("date"), $"Quantity" ) .groupBy($"date") .sum("Quantity") .withColumnRenamed("sum(Quantity)", "totalQuantity") .orderBy($"date")

时间: 2023-11-13 17:52:39 浏览: 49
这是一个Spark DataFrame的代码片段,它的作用是将原始数据按照日期进行聚合,并统计每个日期的总销售数量。 具体来说,它首先使用`select`方法选择了两个字段:`InvoiceDate`和`Quantity`。其中,`$"InvoiceDate"`表示DataFrame中的一列,`to_timestamp`函数将其转换为时间戳格式,再使用`to_date`函数将时间戳转换为日期格式。这样就得到了一个新的名为`date`的列,表示每个订单的日期。同时,选择了`Quantity`列,表示每个订单的销售数量。 接着,它使用`groupBy`方法对`date`列进行分组,然后使用`sum`方法对`Quantity`列进行求和,得到每个日期的总销售数量。使用`withColumnRenamed`方法将新生成的列重命名为`totalQuantity`,方便后续处理。 最后,使用`orderBy`方法按照`date`列进行排序,得到了按照日期聚合后的DataFrame。 需要注意的是,这段代码使用了Spark的DataFrame API,并且其中的`$"InvoiceDate"`和`$"Quantity"`表示DataFrame中的列,`as`方法将新生成的列重命名为`date`,`groupBy`和`sum`方法用于对数据进行聚合。如果您想要运行这段代码,需要在Spark环境中使用Scala或Python编写程序,加载原始数据并创建DataFrame,然后将这段代码作为DataFrame的一部分进行处理。
相关问题

(x, y), (x_val, y_val) = datasets.mnist.load_data() x = tf.convert_to_tensor(x, dtype=tf.float32) / 255.

This code loads the popular MNIST dataset, which contains a large number of hand-written digit images. The first line assigns two tuples of data to the variables `(x, y)` and `(x_val, y_val)`. `x` and `y` contain the training data - `x` being images of hand-written digits and `y` being their corresponding labels (0-9). `x_val` and `y_val` contain the validation data, which is a subset of the training data used to evaluate and tune the model during training. The second line of code converts the `x` tensor into a TensorFlow tensor with a `float32` data-type and scales its pixel values by dividing them by 255. This is known as normalization, which is a common pre-processing step in machine learning. Normalization ensures that all features have a similar scale and prevents one feature from dominating over the others during training. Scaling by 255 transforms the pixel values from the range 0-255 to the range 0-1.

var timelong = "2023:07:14 18:24:48" val index = timelong.indexOf(' ') if (index != -1) { val substring = timelong.substring(0, index) val formatter = DateTimeFormatter.ofPattern("yyyy:MM:dd") val dateTime = LocalDateTime.parse(substring, formatter) val timestamp = dateTime.toEpochSecond(ZoneOffset.UTC) return timestamp }这样写正确那

您的代码基本上是正确的,可以将格式化后的日期字符串截取到年月日部分,并将其转换为 `Long` 类型的时间戳。以下是您提供的代码的一些小修改: ```kotlin val timelong = "2023:07:14 18:24:48" val index = timelong.indexOf(' ') if (index != -1) { val substring = timelong.substring(0, index) val formatter = DateTimeFormatter.ofPattern("yyyy:MM:dd") val dateTime = LocalDate.parse(substring, formatter).atStartOfDay() val timestamp = dateTime.toEpochSecond(ZoneOffset.UTC) return timestamp } ``` 在您的代码中,我们进行了一些调整: 1. 将 `substring` 变量的类型更改为 `LocalDate`,因为我们只需要年月日部分。 2. 使用 `atStartOfDay()` 方法将 `LocalDate` 转换为 `LocalDateTime`,以便后续可以使用 `toEpochSecond()` 方法。 3. 返回时间戳 `timestamp`。 请注意,上述代码仅处理了格式化后的日期字符串中的年月日部分,并将其转换为时间戳。如果您还需要处理时间部分(时、分、秒),您需要相应地修改代码。

相关推荐

请详细解释一下这段代码,每一句给上相应的详细注解:sub['t'] = 0 submission = [] for f in test: df = pd.read_csv(f) df.set_index('Time', drop=True, inplace=True) df['Id'] = f.split('/')[-1].split('.')[0] # df = df.fillna(0).reset_index(drop=True) df['Time_frac']=(df.index/df.index.max()).values#currently the index of data is actually "Time" df = pd.merge(df, tasks[['Id','t_kmeans']], how='left', on='Id').fillna(-1) # df = pd.merge(df, subjects[['Id','s_kmeans']], how='left', on='Id').fillna(-1) df = pd.merge(df, metadata_complex[['Id','Subject']+['Visit','Test','Medication','s_kmeans']], how='left', on='Id').fillna(-1) df_feats = fc.calculate(df, return_df=True, include_final_window=True, approve_sparsity=True, window_idx="begin") df = df.merge(df_feats, how="left", left_index=True, right_index=True) df.fillna(method="ffill", inplace=True) # res = pd.DataFrame(np.round(reg.predict(df[cols]).clip(0.0,1.0),3), columns=pcols) res_vals=[] for i_fold in range(N_FOLDS): res_val=np.round(regs[i_fold].predict(df[cols]).clip(0.0,1.0),3) res_vals.append(np.expand_dims(res_val,axis=2)) res_vals=np.mean(np.concatenate(res_vals,axis=2),axis=2) res = pd.DataFrame(res_vals, columns=pcols) df = pd.concat([df,res], axis=1) df['Id'] = df['Id'].astype(str) + '_' + df.index.astype(str) submission.append(df[scols]) submission = pd.concat(submission) submission = pd.merge(sub[['Id']], submission, how='left', on='Id').fillna(0.0) submission[scols].to_csv('submission.csv', index=False)

最新推荐

recommend-type

解决keras,val_categorical_accuracy:,0.0000e+00问题

主要介绍了解决keras,val_categorical_accuracy:,0.0000e+00问题,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

2024年印度标定气体混合物市场机会及渠道调研报告-样本.docx

2024年印度标定气体混合物市场机会及渠道调研报告-样本
recommend-type

基于C8051F005单片机的两相混合式直线步进电机驱动系统的设计

本课题采用比普通单片机快十多倍的C8051F005单片机,设计了基于C8051F005 控制的直线步进电机驱动控制系统,扩大了细分度和速度的可调节范围。 在控制策略上,依据直线步进电机力-速特性和动力学方程,推导了直线步进电动机理想的升降速控制曲线,实现了指数规律的升降速控制,使系统具有良好的动态特性,解决了点位控制中的失步和直线步进电机行程末端的机械冲击问题;采用等幅均匀细分控制技术,有效地克服直线步进电机低频振动,提高了电机在中、低速运行时的性能,提高了系统的分辨率,减小了噪音;采用具有恒流斩波功能的专用驱动芯片,使直线步进电机绕组电流恒定,电机运行更加平稳。 完成了C8051F005单片机和UC3717A结合的硬件电路设计,用汇编语言编写直线步进电机定位、匀速往返和加减速三种运行方式控制程序。实现了对直线步进电机的启停、定位、调速及正反向运行的控制。最后在SLPMU-025A样机上进行了测试,实验结果满足设计要求。
recommend-type

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节

中文翻译Introduction to Linear Algebra, 5th Edition 2.1节 线性代数的核心问题是求解方程组。这些方程都是线性的,即未知数仅与数相乘——我们绝不会 遇见 x 乘以 y。我们的第一个线性方程组较小。接下来你来看看它引申出多远: 两个方程 两个未知数 x − 2y = 1 3x + 2y = 11 (1) 我们一次从一个行开始。第一个方程 x − 2y = 1 得出了 xy 平面的一条直线。由于点 x = 1, y = 0 解 出该方程,因此它在这条直线上。因为 3 − 2 = 1,所以点 x = 3, y = 1 也在这条直线上。若我们选择 x = 101,那我们求出 y = 50。 这条特定直线的斜率是 12,是因为当 x 变化 2 时 y 增加 1。斜率在微积分中很重要,然而这是线 性代数! 图 2.1 将展示第一条直线 x − 2y = 1。此“行图”中的第二条直线来自第二个方程 3x + 2y = 11。你 不能错过两条线的交点 x = 3, y = 1。点 (3, 1) 位于两条线上并且解出两个方程。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

识别MATLAB微分方程求解中的混沌行为:分析非线性方程混沌行为的实用技巧

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程是描述物理、工程和金融等领域中动态系统的数学模型。MATLAB提供了强大的工具来求解微分方程,包括内置求解器和自定义函数
recommend-type

physon如何做ERP系统

作为一个AI语言模型,我可以给您提供一些基本的建议和思路: 1.明确需求和目标:在开始开发ERP系统之前,需要明确您的业务需求和目标,了解您的业务流程、流程数据、员工角色和权限、财务管理等方面的要求,这样才能更好的设计和开发ERP系统。 2.选择技术框架和开发工具:选择合适的技术框架和开发工具是ERP系统开发的关键。选择一种流行的技术框架和工具可以提高开发效率和质量。 3.设计数据库:ERP系统需要一个功能强大的数据库来存储数据。设计数据库需要考虑数据的完整性、安全性和可扩展性。 4.设计系统架构:系统架构是ERP系统的骨架,需要考虑系统的可扩展性、可维护性和性能。 5.开发和测试:
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

探索MATLAB微分方程求解中的分岔分析:揭示方程动态行为的秘密

![matlab求解微分方程](https://img-blog.csdnimg.cn/2021062810300367.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80MTQ3OTY3OA==,size_16,color_FFFFFF,t_70) # 1. MATLAB微分方程求解概述 微分方程在科学、工程和金融等领域有着广泛的应用。MATLAB作为一种强大的数值计算软件,提供了丰富的微分方程求解工具。本章将概述