对于四个不同的调频调幅信号,乘以一个随机两行四列的用来模拟混合信道的随机矩阵,形成两路混合信号,请写一个K-SVD字典和正交匹配追踪算法的代码来实现这四个信号的重构,
时间: 2024-03-10 19:50:21 浏览: 61
好的,我会尽力解答。首先我们需要明确一下K-SVD字典和正交匹配追踪算法的概念和流程。
K-SVD字典是一种基于稀疏表示的字典学习算法,其目的是从一组训练数据中学习一组字典,使得这些字典能够用来准确地表示原始信号,并且尽可能地稀疏。
正交匹配追踪算法是一种基于迭代的信号重构算法,其目的是从混合信号中逐步分离出原始信号,并且利用K-SVD字典进行重构。
下面是代码实现:
```python
import numpy as np
from sklearn.decomposition import DictionaryLearning
def create_mix_signals(signals):
# 创建混合信号
mixing_matrix = np.random.rand(2, 4)
mixed_signals = np.dot(mixing_matrix, signals)
return mixed_signals, mixing_matrix
def ksvd_reconstruction(mixed_signals, mixing_matrix):
# 利用K-SVD算法进行字典学习
dico = DictionaryLearning(n_components=4).fit(mixed_signals.T).components_
# 利用正交匹配追踪算法进行信号重构
recovered_signals = np.zeros((4, mixed_signals.shape[1]))
for i in range(mixed_signals.shape[1]):
x = mixed_signals[:, i]
residual = x
index = []
for j in range(4):
dot_products = np.abs(np.dot(dico.T, residual))
pos = np.argmax(dot_products)
index.append(pos)
if j != 3:
d = dico[:, index]
alpha = np.dot(np.linalg.inv(np.dot(d.T, d)), np.dot(d.T, x))
residual = x - np.dot(d, alpha)
alpha = np.zeros(4)
alpha[index] = np.dot(np.linalg.inv(np.dot(dico[:, index].T, dico[:, index])), np.dot(dico[:, index].T, x))
recovered_signals[:, i] = np.dot(dico, alpha)
# 利用混合矩阵进行解混合
original_signals = np.dot(np.linalg.inv(mixing_matrix), recovered_signals)
return original_signals
```
使用示例:
```python
# 创建四个不同的信号
signal_1 = np.random.randn(100)
signal_2 = np.sin(np.linspace(0, 2*np.pi, 100))
signal_3 = np.random.randn(100) + np.sin(np.linspace(0, 2*np.pi, 100))
signal_4 = np.random.randn(100) + np.cos(np.linspace(0, 2*np.pi, 100))
signals = np.vstack((signal_1, signal_2, signal_3, signal_4))
# 创建混合信号并解混合
mixed_signals, mixing_matrix = create_mix_signals(signals)
recovered_signals = ksvd_reconstruction(mixed_signals, mixing_matrix)
# 可视化结果
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 8))
for i in range(4):
plt.subplot(4, 1, i+1)
plt.plot(signals[i], label='Original Signal')
plt.plot(recovered_signals[i], label='Recovered Signal')
plt.legend()
plt.show()
```
希望能够帮到你!
阅读全文