解释以下代码:import numpy as np import pandas as pd from scipy.optimize import minimize from pygad import GA 读取数据 stations = pd.read_excel("附件 1:车站数据.xlsx") section_time = pd.read_excel("附件 2:区间运行时间.xlsx") OD_flow = pd.read_excel("附件 3:OD 客流数据.xlsx") section_flow = pd.read_excel("附件 4:断面客流数据.xlsx") other_data = pd.read_excel("附件 5:其他数据.xlsx") 参数设定 w1, w2, w3, w4 = 0.25, 0.25, 0.25, 0.25 目标函数 def fitness_function(solution, solution_idx): n1, n2 = solution D1, D2 = other_data["大交路运营里程"].values[0], other_data["小交路运营里 "].values[0] C_fixed = other_data["固定成本系数"].values[0] * (n1 + n2) C_variable = other_data["变动成本系数"].values[0] * (n1 * D1 + n2 * D2) T_wait = calculate_wait_time(n1, n2) T_onboard = calculate_onboard_time(n1, n2) cost = w1 C_fixed + w2 C_variable + w3 T_wait + w4 T_onboard return 1 / cost 计算等待时间 def calculate_wait_time(n1, n2): # 假设根据实际情况计算等待时间 T_wait = 0 return T_wait 计算在车时间 def calculate_onboard_time(n1, n2): # 假设根据实际情况计算在车时间 T_onboard = 0 return T_onboard 遗传算法求解 ga_instance = GA(num_generations=100, num_parents_mating=5, fitness_func=fitness_function, sol_per_pop=10, num_genes=2, gene_space=[(1, 20), (1, 20)], parent_selection_type="rank", keep_parents=2, crossover_type="single_point", mutation_type="random", mutation_percent_genes=10) ga_instance.run() solution, solution_fitness, _ = ga_instance.best_solution() n1, n2 = int(solution[0]), int(solution[1]) print(f"安排大交路列车开行的数量:{n1}") print(f"安排小交路列车开行的数量:{n2}")
时间: 2024-03-04 10:53:40 浏览: 140
这段代码是一个交通调度问题的求解代码,主要包括以下几个步骤:
1. 导入必要的库,包括numpy、pandas、scipy.optimize和pygad。
2. 读取数据,其中包括车站数据、区间运行时间、OD客流数据、断面客流数据和其他数据。
3. 设置参数,包括权重系数和交路运营里程等。
4. 定义目标函数fitness_function,其中通过计算固定成本、变动成本、等待时间和在车时间来计算总成本,然后通过倒数的方式将总成本转化为适应度值。
5. 定义两个子函数,用于计算等待时间和在车时间。
6. 使用遗传算法求解,其中设置了一些参数,如迭代次数、种群大小、基因个数、基因空间范围、选择方式、交叉方式、变异方式等。
7. 输出最优解,即安排大交路列车开行的数量和安排小交路列车开行的数量。
总的来说,这段代码是一个比较完整的交通调度问题的求解代码,包括了数据读取、参数设置、目标函数定义、遗传算法求解等多个步骤。
相关问题
解释代码:import numpy as np import pandas as pd from pandas import DataFreme
这段代码导入了三个库:NumPy、Pandas和Pandas中的DataFrame类。
- `import numpy as np`:这行代码将NumPy库导入,并将其命名为“np”,这是一个惯例。这样做的好处是,可以用np来代替numpy,使代码更简洁易读。
- `import pandas as pd`:这行代码将Pandas库导入,并将其命名为“pd”,同样也是一个惯例。这样做的好处是,可以用pd来代替pandas,使代码更简洁易读。
- `from pandas import DataFrame`:这行代码从Pandas库中导入DataFrame类。这个类是Pandas中最常用的数据结构之一,用于处理表格数据。
综上,这段代码的作用是导入NumPy和Pandas库,并从Pandas库中导入DataFrame类,以便在代码中使用这些库和类。
请帮我解释一下这段代码:import numpy as np import pandas as pd import matplotlib.pyplot as plt import torch
这段代码是使用Python导入了几个常用的库:numpy、pandas、matplotlib和torch。
- `import numpy as np`:导入numpy库并将其命名为`np`,numpy是一个用于进行数值计算的库,提供了高效的数组操作和数学函数。
- `import pandas as pd`:导入pandas库并将其命名为`pd`,pandas是一个用于数据处理和分析的库,提供了高效的数据结构和数据操作方法。
- `import matplotlib.pyplot as plt`:导入matplotlib库中的pyplot模块,并将其命名为`plt`,matplotlib是一个用于绘制图形的库,pyplot模块提供了类似于MATLAB的绘图接口。
- `import torch`:导入torch库,torch是一个用于深度学习的库,提供了张量操作、自动求导和神经网络等功能。
通过导入这些库,可以在代码中使用对应的功能和函数,例如使用numpy进行数值计算,使用pandas处理和分析数据,使用matplotlib绘制图形,以及使用torch进行深度学习相关的操作。
阅读全文