def learn(self): # 从所有内存中抽样批处理内存 if self.memory_counter > self.memory_size:#随机选择一组,减少数据的依赖性 sample_index = np.random.choice(self.memory_size, size=self.batch_size) else: sample_index = np.random.choice(self.memory_counter, size=self.batch_size) batch_memory = self.memory[sample_index, :]#batch_memory是一个二维的 numpy 数组,用于存储从记忆库(memory)中随机选择的一批记忆(memory)数据。 h_train = torch.Tensor(batch_memory[:, 0: self.net[0]])#h_train是这批记忆的前self.net[0]个元素,即输入数据 m_train = torch.Tensor(batch_memory[:, self.net[0]:])#m_train是这批记忆的后面的元素,即标签。 optimizer = optim.Adam(self.model.parameters(), lr=self.lr,betas = (0.09,0.999),weight_decay=0.0001)#是一个 Adam 优化器,用来更新网络的参数,使得误差不断降低。 criterion = nn.BCELoss()#是一个二分类交叉熵损失函数,用来计算网络的预测结果和真实结果的误差,通过反向传播算法更新网络的参数,使得误差不断降低。 self.model.train() optimizer.zero_grad() predict = self.model(h_train)#得到网络的输出结果 loss = criterion(predict, m_train) loss.backward() optimizer.step() # 训练DNN self.cost = loss.item() assert(self.cost > 0) self.cost_his.append(self.cost) def decode(self, h, k = 1, mode = 'OP'): # 在输入到张量时具有批处理维度 h = torch.Tensor(h[np.newaxis, :])#将名为h的 numpy 数组转换为 PyTorch 的张量(tensor),并在第一个维度上添加一个维度,以便可以将其用作 PyTorch 模型的输入 self.model.eval()#切换到评估模式。使结果更加准确有效 m_pred = self.model(h)#使用模型self对输入h做出的预测。m_pred是预测结果,是一个张量(tensor)类型的数据 m_pred = m_pred.detach().numpy()#将预测结果从张量类型数据转换为 NumPy 数组类型数据,并分离出梯度信息,从而提高准确度 if mode == 'OP': return self.knm(m_pred[0], k) elif mode == 'KNN': return self.knn(m_pred[0], k) elif mode == 'OPN': return self.opn(m_pred[0], k) else: print("The action selection must be 'OP' or 'KNN' or 'OPN'"),这段代码是无模型的DRL算法吗

时间: 2024-02-14 11:04:49 浏览: 19
是的,这段代码是一个基于无模型的DRL算法的实现。具体来说,它使用了一个神经网络模型来学习从状态到动作的映射,使用记忆回放和随机梯度下降来实现学习过程。其中,函数learn()用于从记忆库中抽样数据并更新网络参数,函数decode()用于根据当前状态预测最优动作,其中包括三种选择动作的方式(OP、KNN和OPN)。这些都是无模型DRL算法中常用的操作。
相关问题

def learn(self): # 从所有内存中抽样批处理内存 if self.memory_counter > self.memory_size:#随机选择一组,减少数据的依赖性 sample_index = np.random.choice(self.memory_size, size=self.batch_size) else: sample_index = np.random.choice(self.memory_counter, size=self.batch_size) batch_memory = self.memory[sample_index, :]#batch_memory是一个二维的 numpy 数组,用于存储从记忆库(memory)中随机选择的一批记忆(memory)数据。 h_train = torch.Tensor(batch_memory[:, 0: self.net[0]])#h_train是这批记忆的前self.net[0]个元素,即输入数据 m_train = torch.Tensor(batch_memory[:, self.net[0]:])#m_train是这批记忆的后面的元素,即标签。 optimizer = optim.Adam(self.model.parameters(), lr=self.lr,betas = (0.09,0.999),weight_decay=0.0001)#是一个 Adam 优化器,用来更新网络的参数,使得误差不断降低。 criterion = nn.BCELoss()#是一个二分类交叉熵损失函数,用来计算网络的预测结果和真实结果的误差,通过反向传播算法更新网络的参数,使得误差不断降低。 self.model.train() optimizer.zero_grad() predict = self.model(h_train)#得到网络的输出结果 loss = criterion(predict, m_train) loss.backward() optimizer.step() # 训练DNN self.cost = loss.item() assert(self.cost > 0) self.cost_his.append(self.cost),给这段代码加注释

``` def learn(self): # 从所有内存中抽样批处理内存 if self.memory_counter > self.memory_size: # 随机选择一组,减少数据的依赖性 sample_index = np.random.choice(self.memory_size, size=self.batch_size) else: sample_index = np.random.choice(self.memory_counter, size=self.batch_size) # batch_memory是一个二维的 numpy 数组,用于存储从记忆库(memory)中随机选择的一批记忆(memory)数据。 batch_memory = self.memory[sample_index, :] # h_train是这批记忆的前self.net[0]个元素,即输入数据 h_train = torch.Tensor(batch_memory[:, 0: self.net[0]]) # m_train是这批记忆的后面的元素,即标签。 m_train = torch.Tensor(batch_memory[:, self.net[0]:]) # 是一个 Adam 优化器,用来更新网络的参数,使得误差不断降低。 optimizer = optim.Adam(self.model.parameters(), lr=self.lr, betas=(0.09, 0.999), weight_decay=0.0001) # 是一个二分类交叉熵损失函数,用来计算网络的预测结果和真实结果的误差, # 通过反向传播算法更新网络的参数,使得误差不断降低。 criterion = nn.BCELoss() # 将模型置于训练状态 self.model.train() # 清空梯度 optimizer.zero_grad() # 得到网络的输出结果 predict = self.model(h_train) # 计算损失函数 loss = criterion(predict, m_train) # 反向传播 loss.backward() # 更新网络参数 optimizer.step() # 记录本轮训练的损失函数值 self.cost = loss.item() # 检查损失是否大于 0 assert (self.cost > 0) # 将损失值记录到 self.cost_his 列表中 self.cost_his.append(self.cost) ``` 这段代码实现了深度神经网络的训练过程,具体细节如下: 1. 根据当前记忆库中存储的数据数量来决定如何进行批量抽样,从而减少数据之间的依赖性。 2. 将抽样得到的一批数据分别作为输入和标签,构成二维的 numpy 数组。 3. 初始化 Adam 优化器和二分类交叉熵损失函数。 4. 将模型置于训练状态,并清空梯度。 5. 将输入数据输入到模型中,得到模型的输出结果。 6. 计算网络的预测结果和真实结果之间的误差,并通过反向传播算法更新网络的参数,使得误差不断降低。 7. 记录本轮训练的损失函数值,并将其添加到 `self.cost_his` 列表中。

def encode(self, h, m): # 编码条目 self.remember(h, m) # 每多步训练DNN if self.memory_counter % self.training_interval == 0:#如果 self.memory_counter(记忆计数器)能够被 self.training_interval 整除,那么条件成立,执行相应的代码,当模型已经接收了足够数量的样本后,就开始进行训练。 self.learn() def learn(self): # 从所有内存中抽样批处理内存 if self.memory_counter > self.memory_size:#随机选择一组,减少数据的依赖性 sample_index = np.random.choice(self.memory_size, size=self.batch_size) else: sample_index = np.random.choice(self.memory_counter, size=self.batch_size) batch_memory = self.memory[sample_index, :]#batch_memory是一个二维的 numpy 数组,用于存储从记忆库(memory)中随机选择的一批记忆(memory)数据。 h_train = torch.Tensor(batch_memory[:, 0: self.net[0]])#h_train是这批记忆的前self.net[0]个元素,即输入数据 m_train = torch.Tensor(batch_memory[:, self.net[0]:])#m_train是这批记忆的后面的元素,即标签。 optimizer = optim.Adam(self.model.parameters(), lr=self.lr,betas = (0.09,0.999),weight_decay=0.0001)#是一个 Adam 优化器,用来更新网络的参数,使得误差不断降低。 criterion = nn.BCELoss()#是一个二分类交叉熵损失函数,用来计算网络的预测结果和真实结果的误差,通过反向传播算法更新网络的参数,使得误差不断降低。 self.model.train() optimizer.zero_grad() predict = self.model(h_train)#得到网络的输出结果 loss = criterion(predict, m_train) loss.backward() optimizer.step() # 训练DNN self.cost = loss.item() assert(self.cost > 0) self.cost_his.append(self.cost)这个encode函数有什么用

这个 encode 函数是用于将输入数据和标签数据编码为记忆(memory)条目,以便存储在记忆库(memory)中。其中,h 表示输入数据,m 表示标签数据。每多少步训练DNN,就会调用 learn 函数对模型进行训练。如果记忆计数器能够被训练间隔整除,就开始训练模型。在 learn 函数中,会从记忆库中抽取一批记忆数据,用来训练模型。然后使用 Adam 优化器更新网络的参数,并使用二分类交叉熵损失函数计算网络的预测结果和真实结果的误差,通过反向传播算法更新网络的参数,使得误差不断降低。最后记录误差值并存储在 cost_his 列表中。这个函数的作用是实现深度强化学习中的记忆回放(memory replay)机制,以提高模型的训练效果和稳定性。

相关推荐

最新推荐

recommend-type

需要系数法负荷计算软件.zip

需要系数法负荷计算软件
recommend-type

kettle插件-MongoDB Delete2.0

kettle 用于(按条件)删除MongoDB集合数据的插件。 只需要放入kettle 客户端安装目录的 plugins目录下,然后重启kettle客户端即可。
recommend-type

建筑电气负荷计算小软件.zip

建筑电气负荷计算小软件
recommend-type

电线选型、线管选型小型计算软件.zip

电线选型、线管选型小型计算软件
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

用matlab绘制高斯色噪声情况下的频率估计CRLB,其中w(n)是零均值高斯色噪声,w(n)=0.8*w(n-1)+e(n),e(n)服从零均值方差为se的高斯分布

以下是用matlab绘制高斯色噪声情况下频率估计CRLB的代码: ```matlab % 参数设置 N = 100; % 信号长度 se = 0.5; % 噪声方差 w = zeros(N,1); % 高斯色噪声 w(1) = randn(1)*sqrt(se); for n = 2:N w(n) = 0.8*w(n-1) + randn(1)*sqrt(se); end % 计算频率估计CRLB fs = 1; % 采样频率 df = 0.01; % 频率分辨率 f = 0:df:fs/2; % 频率范围 M = length(f); CRLB = zeros(M,1); for
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依