f103c8t6 adc例程

时间: 2023-06-24 10:01:52 浏览: 116
f103c8t6是指STM32F103C8T6型号的微控制器芯片,该芯片常用于工业自动化、电子设备控制和嵌入式系统等领域。而ADC则是代表模数/数模转换器,可将模拟信号转换为数字信号,以便于微控制器芯片进行处理。 在使用f103c8t6芯片进行ADC转换时,需要熟悉如何进行初始化和配置。具体的ADC例程如下: 1. 首先,需要定义ADC的相关变量,并进行初始化和配置,包括AD采样时间、ADC通道、ADC转换率等。 2. 接着,可以通过ADC采样的方法进行信号采集,对采集到的模拟信号进行处理和转换。 3. 最后,将转换后的数字信号进行处理,实现相关的功能和控制。 需要注意的是,在进行AD转换时,需要使用合适的采样时间和分辨率,以便获取准确的模拟信号。 总之,f103c8t6 ADC例程需要通过初始化和配置ADC,采集模拟信号并转换为数字信号,最终实现相关的功能和控制。需要熟练掌握相关的技术和方法,以便应用于相应的领域和工程中。
相关问题

stm32f103c8t6 adc例程

以下是基于HAL库的STM32F103C8T6 ADC例程,可以参考: ``` #include "stm32f1xx_hal.h" ADC_HandleTypeDef hadc1; void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC1_Init(void); int main(void) { HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_ADC1_Init(); while (1) { HAL_ADC_Start(&hadc1); HAL_ADC_PollForConversion(&hadc1, 100); uint16_t adc_value = HAL_ADC_GetValue(&hadc1); HAL_ADC_Stop(&hadc1); // Do something with adc_value } } void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK) { Error_Handler(); } } static void MX_ADC1_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; __HAL_RCC_ADC1_CLK_ENABLE(); hadc1.Instance = ADC1; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_13CYCLES_5; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } } static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; __HAL_RCC_GPIOC_CLK_ENABLE(); GPIO_InitStruct.Pin = GPIO_PIN_13; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); } ``` 这个例程初始化了ADC1,将其配置为单次转换模式,使用软件触发,并且采样时间为13.5个时钟周期,读取的模拟值存储在变量adc_value中。注意,这个例程使用的是PA0引脚作为ADC的输入引脚,如果需要使用其它引脚需要进行相应的修改。

stm32f103c8t6的adc例程

### 回答1: STM32F103C8T6是一款基于Cortex-M3内核的微控制器,支持多种外设,其中包括ADC。ADC是模拟信号数字化的重要部分,可用于测量传感器、采集音频信号等。 在进行ADC采集之前,需要对ADC进行初始化配置,包括采样时间、参考电压等参数。初始化可以通过寄存器直接配置或使用HAL库函数进行配置。在采集时,可以通过轮询模式或中断模式进行。轮询模式需要反复读取ADC寄存器中的值,并进行处理,此方法效率较低。中断模式可在采集完一定数量的数据后触发中断,将数据传送至数组中进行处理,效率较高。 例如,以下为使用HAL库函数进行ADC采集的简单例程: 1. 配置ADC: ``` ADC_HandleTypeDef hadc; hadc.Instance = ADC1; hadc.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV2; hadc.Init.Resolution = ADC_RESOLUTION_12B; hadc.Init.ScanConvMode = DISABLE; hadc.Init.ContinuousConvMode = DISABLE; hadc.Init.DiscontinuousConvMode = DISABLE; hadc.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc.Init.NbrOfConversion = 1; hadc.Init.DMAContinuousRequests = DISABLE; hadc.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if(HAL_ADC_Init(&hadc) != HAL_OK) { //ADC初始化失败,进行错误处理 } ``` 2. 配置ADC输入通道: ``` ADC_ChannelConfTypeDef sConfig; sConfig.Channel = ADC_CHANNEL_0; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_13CYCLES_5; if(HAL_ADC_ConfigChannel(&hadc, &sConfig) != HAL_OK) { //ADC通道配置失败,进行错误处理 } ``` 3. 进行数据采集: ``` uint32_t adc_value; if(HAL_ADC_Start(&hadc) != HAL_OK) { //ADC启动失败,进行错误处理 } if(HAL_ADC_PollForConversion(&hadc, 100) != HAL_OK) { //ADC数据采集失败,进行错误处理 } adc_value = HAL_ADC_GetValue(&hadc); ``` 以上例程为轮询模式,将ADC采集结果存储在变量`adc_value`中,可根据实际情况进行处理。如需使用中断模式进行采集,可使用HAL库函数`HAL_ADC_Start_IT`启动ADC中断采集。 ### 回答2: STM32F103C8T6是一种32位微控制器,它支持多种功能,其中之一就是ADC模块,可以用于采集模拟信号。在使用ADC之前,需要先进行ADC初始化的工作。 在使用STM32F103C8T6的ADC模块之前,需要使用以下代码初始化ADC模块: ``` void ADC_Init(void) { ADC_InitTypeDef ADC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE); ADC_DeInit(ADC1); ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1, &ADC_InitStructure); ADC_Cmd(ADC1, ENABLE); } ``` 在初始化完成后,可以使用以下代码开始ADC转换: ``` u16 Get_Adc(u8 ch) { ADC_RegularChannelConfig(ADC1, ch, 1, ADC_SampleTime_239Cycles5); //配置ADC通道及采样周期 ADC_SoftwareStartConvCmd(ADC1, ENABLE); //开始ADC转换 while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)); //等待转换完成 return ADC_GetConversionValue(ADC1); //返回转换结果 } ``` 需要注意的是,ADC模块的输入信号需要在0~3.3V之间,超过这个电压范围会导致损坏。同时,ADC采样周期需要进行配置,以确保采样精度,一般情况下采样周期需要在5到239.5个周期之间。 在使用ADC模块时,还需要注意ADC模块的分辨率,STM32F103C8T6的ADC模块一般支持12位分辨率。在进行ADC数值转换后,还需要进行处理,将数值转换为对应的电压值。可以使用以下代码: ``` float adc_result = Get_Adc(ADC_Channel_0) * (3.3 / 4096); //将12位ADC转换为电压值 ``` 上述代码将12位ADC转换为电压值,并且假设输入信号为0~3.3V。这个值的单位是伏特。 总之,在使用STM32F103C8T6的ADC模块时,需要对其进行初始化,并进行配置采样周期和ADC分辨率。最后,使用转换结果计算对应的电压值。 ### 回答3: STM32F103C8T6是一款高性能32位ARM Cortex-M3内核的微控制器,拥有多种外设模块,其中包括12位ADC(模数转换器)模块。ADC模块可以将模拟信号转换为数字信号,用于获得外界模拟量的数据,是STM32F103C8T6控制器信号处理的重要模块之一。 在使用STM32F103C8T6的ADC模块时,需要先进行一些基础的初始化工作。首先,需要开启ADC时钟,并设置ADC输入通道、采样周期等参数。通常情况下,可以使用库函数来进行初始化,下面是一个基本的初始化代码: ``` GPIO_InitTypeDef GPIO_InitStructure; ADC_InitTypeDef ADC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1, ENABLE); GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; GPIO_Init(GPIOA, &GPIO_InitStructure); ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; ADC_InitStructure.ADC_ScanConvMode = DISABLE; ADC_InitStructure.ADC_ContinuousConvMode = DISABLE; ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; ADC_InitStructure.ADC_NbrOfChannel = 1; ADC_Init(ADC1,&ADC_InitStructure); ADC_Cmd(ADC1, ENABLE); ``` 该代码开启了ADC1的时钟,设置了其输入通道为PA2,并设置了ADC的基本参数。ADC_Init()函数用于配置ADC的工作模式和参数,ADC_Cmd()函数则开启ADC模块。 在完成基础初始化操作后,可以使用以下代码获取一个ADC采样值: ``` ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 1, ADC_SampleTime_28Cycles5); ADC_SoftwareStartConvCmd(ADC1, ENABLE); while(!ADC_GetFlagStatus(ADC1, ADC_FLAG_EOC)); u16 adc_value = ADC_GetConversionValue(ADC1); ``` ADC_RegularChannelConfig()函数用于配置ADC通道和采样时间,ADC_SoftwareStartConvCmd()函数则启动一次ADC转换。ADC_GetFlagStatus()函数用于判断转换是否完成,ADC_GetConversionValue()函数则用于获取ADC转换结果。 综上所述,STM32F103C8T6的ADC模块提供了简单易用的库函数,方便用户进行基础的ADC采样操作。在实际应用中,需要结合具体的需求和程序设计,进一步优化ADC采样效果和数据处理方式,以获得更好的实际效果。
阅读全文

相关推荐

最新推荐

recommend-type

农业革命-基于YOLOv11的多作物叶片表型分析与精准计数技术解析.pdf

想深入掌握目标检测前沿技术?Yolov11绝对不容错过!作为目标检测领域的新星,Yolov11融合了先进算法与创新架构,具备更快的检测速度、更高的检测精度。它不仅能精准识别各类目标,还在复杂场景下展现出卓越性能。无论是学术研究,还是工业应用,Yolov11都能提供强大助力。阅读我们的技术文章,带你全方位剖析Yolov11,解锁更多技术奥秘!
recommend-type

miniconda3 OringePi5端安装包

miniconda3 OringePi5端安装包
recommend-type

Spring Websocket快速实现与SSMTest实战应用

标题“websocket包”指代的是一个在计算机网络技术中应用广泛的组件或技术包。WebSocket是一种网络通信协议,它提供了浏览器与服务器之间进行全双工通信的能力。具体而言,WebSocket允许服务器主动向客户端推送信息,是实现即时通讯功能的绝佳选择。 描述中提到的“springwebsocket实现代码”,表明该包中的核心内容是基于Spring框架对WebSocket协议的实现。Spring是Java平台上一个非常流行的开源应用框架,提供了全面的编程和配置模型。在Spring中实现WebSocket功能,开发者通常会使用Spring提供的注解和配置类,简化WebSocket服务端的编程工作。使用Spring的WebSocket实现意味着开发者可以利用Spring提供的依赖注入、声明式事务管理、安全性控制等高级功能。此外,Spring WebSocket还支持与Spring MVC的集成,使得在Web应用中使用WebSocket变得更加灵活和方便。 直接在Eclipse上面引用,说明这个websocket包是易于集成的库或模块。Eclipse是一个流行的集成开发环境(IDE),支持Java、C++、PHP等多种编程语言和多种框架的开发。在Eclipse中引用一个库或模块通常意味着需要将相关的jar包、源代码或者配置文件添加到项目中,然后就可以在Eclipse项目中使用该技术了。具体操作可能包括在项目中添加依赖、配置web.xml文件、使用注解标注等方式。 标签为“websocket”,这表明这个文件或项目与WebSocket技术直接相关。标签是用于分类和快速检索的关键字,在给定的文件信息中,“websocket”是核心关键词,它表明该项目或文件的主要功能是与WebSocket通信协议相关的。 文件名称列表中的“SSMTest-master”暗示着这是一个版本控制仓库的名称,例如在GitHub等代码托管平台上。SSM是Spring、SpringMVC和MyBatis三个框架的缩写,它们通常一起使用以构建企业级的Java Web应用。这三个框架分别负责不同的功能:Spring提供核心功能;SpringMVC是一个基于Java的实现了MVC设计模式的请求驱动类型的轻量级Web框架;MyBatis是一个支持定制化SQL、存储过程以及高级映射的持久层框架。Master在这里表示这是项目的主分支。这表明websocket包可能是一个SSM项目中的模块,用于提供WebSocket通讯支持,允许开发者在一个集成了SSM框架的Java Web应用中使用WebSocket技术。 综上所述,这个websocket包可以提供给开发者一种简洁有效的方式,在遵循Spring框架原则的同时,实现WebSocket通信功能。开发者可以利用此包在Eclipse等IDE中快速开发出支持实时通信的Web应用,极大地提升开发效率和应用性能。
recommend-type

电力电子技术的智能化:数据中心的智能电源管理

# 摘要 本文探讨了智能电源管理在数据中心的重要性,从电力电子技术基础到智能化电源管理系统的实施,再到技术的实践案例分析和未来展望。首先,文章介绍了电力电子技术及数据中心供电架构,并分析了其在能效提升中的应用。随后,深入讨论了智能化电源管理系统的组成、功能、监控技术以及能
recommend-type

通过spark sql读取关系型数据库mysql中的数据

Spark SQL是Apache Spark的一个模块,它允许用户在Scala、Python或SQL上下文中查询结构化数据。如果你想从MySQL关系型数据库中读取数据并处理,你可以按照以下步骤操作: 1. 首先,你需要安装`PyMySQL`库(如果使用的是Python),它是Python与MySQL交互的一个Python驱动程序。在命令行输入 `pip install PyMySQL` 来安装。 2. 在Spark环境中,导入`pyspark.sql`库,并创建一个`SparkSession`,这是Spark SQL的入口点。 ```python from pyspark.sql imp
recommend-type

新版微软inspect工具下载:32位与64位版本

根据给定文件信息,我们可以生成以下知识点: 首先,从标题和描述中,我们可以了解到新版微软inspect.exe与inspect32.exe是两个工具,它们分别对应32位和64位的系统架构。这些工具是微软官方提供的,可以用来下载获取。它们源自Windows 8的开发者工具箱,这是一个集合了多种工具以帮助开发者进行应用程序开发与调试的资源包。由于这两个工具被归类到开发者工具箱,我们可以推断,inspect.exe与inspect32.exe是用于应用程序性能检测、问题诊断和用户界面分析的工具。它们对于开发者而言非常实用,可以在开发和测试阶段对程序进行深入的分析。 接下来,从标签“inspect inspect32 spy++”中,我们可以得知inspect.exe与inspect32.exe很有可能是微软Spy++工具的更新版或者是有类似功能的工具。Spy++是Visual Studio集成开发环境(IDE)的一个组件,专门用于Windows应用程序。它允许开发者观察并调试与Windows图形用户界面(GUI)相关的各种细节,包括窗口、控件以及它们之间的消息传递。使用Spy++,开发者可以查看窗口的句柄和类信息、消息流以及子窗口结构。新版inspect工具可能继承了Spy++的所有功能,并可能增加了新功能或改进,以适应新的开发需求和技术。 最后,由于文件名称列表仅提供了“ed5fa992d2624d94ac0eb42ee46db327”,没有提供具体的文件名或扩展名,我们无法从这个文件名直接推断出具体的文件内容或功能。这串看似随机的字符可能代表了文件的哈希值或是文件存储路径的一部分,但这需要更多的上下文信息来确定。 综上所述,新版的inspect.exe与inspect32.exe是微软提供的开发者工具,与Spy++有类似功能,可以用于程序界面分析、问题诊断等。它们是专门为32位和64位系统架构设计的,方便开发者在开发过程中对应用程序进行深入的调试和优化。同时,使用这些工具可以提高开发效率,确保软件质量。由于这些工具来自Windows 8的开发者工具箱,它们可能在兼容性、效率和用户体验上都经过了优化,能够为Windows应用的开发和调试提供更加专业和便捷的解决方案。
recommend-type

如何运用电力电子技术实现IT设备的能耗监控

# 摘要 随着信息技术的快速发展,IT设备能耗监控已成为提升能效和减少环境影响的关键环节。本文首先概述了电力电子技术与IT设备能耗监控的重要性,随后深入探讨了电力电子技术的基础原理及其在能耗监控中的应用。文章详细分析了IT设备能耗监控的理论框架、实践操作以及创新技术的应用,并通过节能改造案例展示了监控系统构建和实施的成效。最后,本文展望了未来能耗监控技术的发展趋势,同时
recommend-type

2635.656845多位小数数字,js不使用四舍五入保留两位小数,然后把结果千分位,想要的结果是2,635.65;如何处理

在JavaScript中,如果你想要将2635.656845这个数字精确地保留两位小数,并且去掉多余的千分位,可以使用`toFixed()`函数结合字符串切片的方法来实现。不过需要注意的是,`toFixed()`会返回一个字符串,所以我们需要先转换它。 以下是一个示例: ```javascript let num = 2635.656845; // 使用 toFixed() 保留两位小数,然后去掉多余的三位 let roundedNum = num.toFixed(2).substring(0, 5); // 如果最后一个字符是 '0',则进一步判断是否真的只有一位小数 if (round
recommend-type

解决最小倍数问题 - Ruby编程项目欧拉实践

根据给定文件信息,以下知识点将围绕Ruby编程语言、欧拉计划以及算法设计方面展开。 首先,“欧拉计划”指的是一系列数学和计算问题,旨在提供一种有趣且富有挑战性的方法来提高数学和编程技能。这类问题通常具有数学背景,并且需要编写程序来解决。 在标题“项目欧拉最小的多个NYC04-SENG-FT-030920”中,我们可以推断出需要解决的问题与找到一个最小的正整数,这个正整数可以被一定范围内的所有整数(本例中为1到20)整除。这是数论中的一个经典问题,通常被称为计算最小公倍数(Least Common Multiple,简称LCM)。 问题中提到的“2520是可以除以1到10的每个数字而没有任何余数的最小数字”,这意味着2520是1到10的最小公倍数。而问题要求我们计算1到20的最小公倍数,这是一个更为复杂的计算任务。 在描述中提到了具体的解决方案实施步骤,包括编码到两个不同的Ruby文件中,并运行RSpec测试。这涉及到Ruby编程语言,特别是文件操作和测试框架的使用。 1. Ruby编程语言知识点: - Ruby是一种高级、解释型编程语言,以其简洁的语法和强大的编程能力而闻名。 - Ruby的面向对象特性允许程序员定义类和对象,以及它们之间的交互。 - 文件操作是Ruby中的一个常见任务,例如,使用`File.open`方法打开文件进行读写操作。 - Ruby有一个内置的测试框架RSpec,用于编写和执行测试用例,以确保代码的正确性和可靠性。 2. 算法设计知识点: - 最小公倍数(LCM)问题可以通过计算两个数的最大公约数(GCD)来解决,因为LCM(a, b) = |a * b| / GCD(a, b),这里的“|a * b|”表示a和b的乘积的绝对值。 - 确定1到N范围内的所有整数的最小公倍数,可以通过迭代地计算当前最小公倍数与下一个整数的最小公倍数来实现。 - 欧拉问题通常要求算法具有高效的时间复杂度和空间复杂度,以处理更大的数值和更复杂的问题。 3. 源代码管理知识点: - 从文件名称列表可以看出,这是一个包含在Git版本控制下的项目。Git是一种流行的分布式版本控制系统,用于源代码管理。 - 在这种情况下,“master”通常指的是项目的主分支,是项目开发的主要工作流所在。 综上所述,本文件要求程序员使用Ruby语言实现一个算法,该算法能够找到一个最小的正整数,它能够被1到20的每个整数整除,同时涉及使用文件操作编写测试代码,并且需要对代码进行版本控制。这些都是程序员日常工作中可能遇到的技术任务,需要综合运用编程语言知识、算法原理和源代码管理技能。
recommend-type

电力电子技术:IT数据中心的能源革命者

# 摘要 本文深入探讨了电力电子技术在IT数据中心中的重要角色,阐述了其基础理论、关键参数以及在数据中心能源需求管理中的应用。文章详细分析了数据中心能耗的构成与评价指标,并讨论了电力供应架构及高效电力分配策略。通过介绍能量回收、模块化解决方案和能源存储技术,探讨了