给我一段c++编写的基于深度学习的pid控制算法
时间: 2023-06-14 13:06:41 浏览: 117
以下是一个基于深度学习的PID控制算法的C++实现示例:
```c++
#include <iostream>
#include <math.h>
#include <vector>
#include <cstdlib>
#include <ctime>
//定义神经网络结构
class NeuralNetwork {
public:
NeuralNetwork(int num_input, int num_hidden, int num_output) {
//初始化权重和偏置
input_num = num_input;
hidden_num = num_hidden;
output_num = num_output;
weights_ih.resize(num_hidden, std::vector<double>(num_input, 0));
weights_ho.resize(num_output, std::vector<double>(num_hidden, 0));
bias_h.resize(num_hidden, 0);
bias_o.resize(num_output, 0);
//随机初始化权重和偏置
srand((unsigned)time(NULL));
for (int i = 0; i < num_hidden; i++) {
for (int j = 0; j < num_input; j++) {
weights_ih[i][j] = (double)rand() / RAND_MAX * 2 - 1;
}
}
for (int i = 0; i < num_output; i++) {
for (int j = 0; j < num_hidden; j++) {
weights_ho[i][j] = (double)rand() / RAND_MAX * 2 - 1;
}
}
for (int i = 0; i < num_hidden; i++) {
bias_h[i] = (double)rand() / RAND_MAX * 2 - 1;
}
for (int i = 0; i < num_output; i++) {
bias_o[i] = (double)rand() / RAND_MAX * 2 - 1;
}
}
//前向传播
std::vector<double> predict(std::vector<double> input) {
std::vector<double> hidden(hidden_num);
std::vector<double> output(output_num);
for (int i = 0; i < hidden_num; i++) {
double sum = 0;
for (int j = 0; j < input_num; j++) {
sum += input[j] * weights_ih[i][j];
}
hidden[i] = sigmoid(sum + bias_h[i]);
}
for (int i = 0; i < output_num; i++) {
double sum = 0;
for (int j = 0; j < hidden_num; j++) {
sum += hidden[j] * weights_ho[i][j];
}
output[i] = sigmoid(sum + bias_o[i]);
}
return output;
}
//反向传播
void train(std::vector<double> input, std::vector<double> target, double learning_rate) {
std::vector<double> hidden(hidden_num);
std::vector<double> output(output_num);
for (int i = 0; i < hidden_num; i++) {
double sum = 0;
for (int j = 0; j < input_num; j++) {
sum += input[j] * weights_ih[i][j];
}
hidden[i] = sigmoid(sum + bias_h[i]);
}
for (int i = 0; i < output_num; i++) {
double sum = 0;
for (int j = 0; j < hidden_num; j++) {
sum += hidden[j] * weights_ho[i][j];
}
output[i] = sigmoid(sum + bias_o[i]);
}
//计算损失函数
std::vector<double> output_error(output_num);
for (int i = 0; i < output_num; i++) {
output_error[i] = target[i] - output[i];
}
std::vector<double> hidden_error(hidden_num);
for (int i = 0; i < hidden_num; i++) {
double sum = 0;
for (int j = 0; j < output_num; j++) {
sum += output_error[j] * weights_ho[j][i];
}
hidden_error[i] = sum * sigmoid_derivative(hidden[i]);
}
//更新权重和偏置
for (int i = 0; i < output_num; i++) {
for (int j = 0; j < hidden_num; j++) {
weights_ho[i][j] += learning_rate * output_error[i] * hidden[j];
}
bias_o[i] += learning_rate * output_error[i];
}
for (int i = 0; i < hidden_num; i++) {
for (int j = 0; j < input_num; j++) {
weights_ih[i][j] += learning_rate * hidden_error[i] * input[j];
}
bias_h[i] += learning_rate * hidden_error[i];
}
}
private:
int input_num;
int hidden_num;
int output_num;
std::vector<std::vector<double>> weights_ih;
std::vector<std::vector<double>> weights_ho;
std::vector<double> bias_h;
std::vector<double> bias_o;
//激活函数
double sigmoid(double x) {
return 1 / (1 + exp(-x));
}
//激活函数的导数
double sigmoid_derivative(double x) {
return x * (1 - x);
}
};
//定义PID控制器
class PIDController {
public:
PIDController(double p, double i, double d, double max_output, double min_output, double dt) {
kp = p;
ki = i;
kd = d;
max_output_value = max_output;
min_output_value = min_output;
delta_time = dt;
last_error = 0;
integral_error = 0;
}
//计算输出
double calculate(double setpoint, double feedback) {
double error = setpoint - feedback;
double derivative_error = (error - last_error) / delta_time;
integral_error += error * delta_time;
double output = kp * error + ki * integral_error + kd * derivative_error;
if (output > max_output_value) {
output = max_output_value;
}
else if (output < min_output_value) {
output = min_output_value;
}
last_error = error;
return output;
}
private:
double kp;
double ki;
double kd;
double max_output_value;
double min_output_value;
double delta_time;
double last_error;
double integral_error;
};
int main() {
NeuralNetwork nn(1, 4, 1); //创建神经网络,输入层1个节点,隐藏层4个节点,输出层1个节点
PIDController pid(0.2, 0.1, 0.05, 1, -1, 0.1); //创建PID控制器,P=0.2,I=0.1,D=0.05,输出范围[-1,1],采样时间0.1s
double setpoint = 10; //设定目标值
double feedback = 0; //初始反馈值
for (int i = 0; i < 100; i++) {
std::vector<double> input{ feedback }; //神经网络输入为反馈值
std::vector<double> output = nn.predict(input); //通过神经网络得到输出
double output_value = output[0]; //输出值即为神经网络输出的第一个元素
double control_value = pid.calculate(setpoint, feedback); //计算PID控制值
feedback = output_value + control_value; //反馈值为神经网络输出值加上PID控制值
std::vector<double> target{ feedback }; //神经网络的目标值为反馈值
nn.train(input, target, 0.1); //用反馈值训练神经网络
std::cout << "Setpoint: " << setpoint << ", Feedback: " << feedback << ", Output: " << output_value << ", Control: " << control_value << std::endl;
}
return 0;
}
```
这个程序实现了一个基于深度学习的PID控制器。首先创建了一个具有1个输入节点、4个隐藏节点和1个输出节点的神经网络,然后用PID控制器计算控制值,将控制值和神经网络输出值相加得到反馈值,最后用反馈值训练神经网络。神经网络的输入为反馈值,输出为反馈值的预测值。PID控制器的参数可以根据实际情况进行调整。
阅读全文