能帮我写一段TD3代码么
时间: 2023-03-24 10:00:22 浏览: 113
MATLA实现TD3算法-自己动手写底层
5星 · 资源好评率100%
当然可以!以下是一个简单的TD3代
码示例:
```
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
# 定义actor网络
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action):
super(Actor, self).__init__()
self.layer1 = nn.Linear(state_dim, 400)
self.layer2 = nn.Linear(400, 300)
self.layer3 = nn.Linear(300, action_dim)
self.max_action = max_action
def forward(self, state):
a = nn.functional.relu(self.layer1(state))
a = nn.functional.relu(self.layer2(a))
a = self.max_action * torch.tanh(self.layer3(a))
return a
# 定义critic网络
class Critic(nn.Module):
def __init__(self, state_dim, action_dim):
super(Critic, self).__init__()
# Q1架构
self.layer1 = nn.Linear(state_dim + action_dim, 400)
self.layer2 = nn.Linear(400, 300)
self.layer3 = nn.Linear(300, 1)
# Q2架构
self.layer4 = nn.Linear(state_dim + action_dim, 400)
self.layer5 = nn.Linear(400, 300)
self.layer6 = nn.Linear(300, 1)
def forward(self, state, action):
sa = torch.cat([state, action], 1)
q1 = nn.functional.relu(self.layer1(sa))
q1 = nn.functional.relu(self.layer2(q1))
q1 = self.layer3(q1)
q2 = nn.functional.relu(self.layer4(sa))
q2 = nn.functional.relu(self.layer5(q2))
q2 = self.layer6(q2)
return q1, q2
# 定义TD3算法
class TD3(object):
def __init__(
self,
state_dim,
action_dim,
max_action
):
self.actor = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target = Actor(state_dim, action_dim, max_action).to(device)
self.actor_target.load_state_dict(self.actor.state_dict())
self.actor_optimizer = optim.Adam(self.actor.parameters(), lr=1e-3)
self.critic = Critic(state_dim, action_dim).to(device)
self.critic_target = Critic(state_dim, action_dim).to(device)
self.critic_target.load_state_dict(self.critic.state_dict())
self.critic_optimizer = optim.Adam(self.critic.parameters(), lr=1e-3)
self.max_action = max_action
def select_action(self, state):
state = torch.Tensor(state.reshape(1, -1)).to(device)
return self.actor(state).cpu().data.numpy().flatten()
def train(self, replay_buffer, iterations, batch_size=100, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5, policy_freq=2):
for it in range(iterations):
# 从经验回放缓冲区中随机抽取一批数据
batch_states, batch_next_states, batch_actions, batch_rewards, batch_dones = replay_buffer.sample(batch_size)
state = torch.Tensor(batch_states).to(device)
next_state = torch.Tensor(batch_next_states).to(device)
action = torch.Tensor(batch_actions).to(device)
reward = torch.Tensor
阅读全文