请给出基于 huggingface 微调 LLaMa 的详细代码
时间: 2023-08-30 16:06:11 浏览: 190
好的,以下是基于 huggingface 的微调 LLaMa 的详细代码:
首先,我们需要安装 huggingface 的 transformers 和 datasets 库:
```
!pip install transformers
!pip install datasets
```
然后,我们可以下载 LLaMa 数据集并将其转换为适合模型训练的格式:
```
from datasets import load_dataset, DatasetDict
# Load the LLaMa dataset
llama = load_dataset("llama")
# Convert the dataset to the format required by the model
def format_dataset(data):
return {"input_text": data["text"], "target_text": data["text"]}
formatted_llama = llama.map(format_dataset)
dataset_dict = DatasetDict({"train": formatted_llama["train"], "validation": formatted_llama["validation"]})
```
接下来,我们可以加载预训练的 GPT2 模型:
```
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
# Load the GPT2 tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
```
然后,我们可以设置训练参数并使用 Trainer 类进行微调:
```
# Set the training arguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="steps",
eval_steps=500,
save_steps=1000,
num_train_epochs=3,
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
warmup_steps=500,
weight_decay=0.01,
logging_dir="./logs",
logging_steps=500,
load_best_model_at_end=True,
metric_for_best_model="eval_loss",
)
# Create the Trainer instance and train the model
trainer = Trainer(
model=model,
tokenizer=tokenizer,
args=training_args,
train_dataset=dataset_dict["train"],
eval_dataset=dataset_dict["validation"],
)
trainer.train()
```
微调完成后,我们可以保存模型并使用它来生成文本:
```
# Save the trained model
trainer.save_model("./gpt-neo-125M-llama")
# Generate text using the trained model
from transformers import pipeline
text_generator = pipeline("text-generation", model="./gpt-neo-125M-llama", tokenizer="EleutherAI/gpt-neo-125M")
generated_text = text_generator("Hello, how are you?", max_length=100)
print(generated_text[0]["generated_text"])
```
这就是基于 huggingface 的微调 LLaMa 的详细代码。
阅读全文