arima模型python预测划分测试集0.3
时间: 2023-09-11 07:04:11 浏览: 110
以下是使用Python中的ARIMA模型进行时间序列预测,并将数据集划分为测试集0.3的示例代码:
首先导入所需的库:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
```
接下来加载数据集并将其划分为训练集和测试集:
```python
# 加载数据集
data = pd.read_csv('data.csv', index_col=0, parse_dates=True)
# 划分训练集和测试集
train_data, test_data = train_test_split(data, test_size=0.3, shuffle=False)
```
然后我们可以使用ARIMA模型拟合训练数据:
```python
# 拟合ARIMA模型
model = ARIMA(train_data, order=(1, 1, 1))
model_fit = model.fit(disp=0)
```
接下来,我们可以使用该模型对测试集进行预测:
```python
# 对测试集进行预测
predictions = model_fit.predict(start=len(train_data), end=len(train_data)+len(test_data)-1, typ='levels')
```
最后,我们可以计算模型的均方根误差(RMSE):
```python
# 计算RMSE
rmse = np.sqrt(mean_squared_error(test_data, predictions))
print('Test RMSE: %.3f' % rmse)
```
完整的代码示例:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima_model import ARIMA
from sklearn.metrics import mean_squared_error
from sklearn.model_selection import train_test_split
# 加载数据集
data = pd.read_csv('data.csv', index_col=0, parse_dates=True)
# 划分训练集和测试集
train_data, test_data = train_test_split(data, test_size=0.3, shuffle=False)
# 拟合ARIMA模型
model = ARIMA(train_data, order=(1, 1, 1))
model_fit = model.fit(disp=0)
# 对测试集进行预测
predictions = model_fit.predict(start=len(train_data), end=len(train_data)+len(test_data)-1, typ='levels')
# 计算RMSE
rmse = np.sqrt(mean_squared_error(test_data, predictions))
print('Test RMSE: %.3f' % rmse)
```
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)
![-](https://img-home.csdnimg.cn/images/20241226111658.png)