Python实现01背包问题代码
时间: 2023-11-05 09:16:32 浏览: 91
当然可以,以下是Python实现01背包问题的代码:
```python
def knapsack01(weights, values, capacity):
n = len(weights)
dp = [[0 for j in range(capacity+1)] for i in range(n+1)]
for i in range(1, n+1):
for j in range(1, capacity+1):
if j >= weights[i-1]:
dp[i][j] = max(dp[i-1][j], dp[i-1][j-weights[i-1]]+values[i-1])
else:
dp[i][j] = dp[i-1][j]
return dp[n][capacity]
```
希望对你有帮助!
相关问题
Python写01背包问题代码贪心算法
好的,以下是Python实现01背包问题的贪心算法代码:
def fractional_knapsack(value, weight, capacity):
"""Return maximum value of items and their fractional amounts.
(max_value, [0/1, ...]) is returned where max_value is the maximum value of
items with total weight not more than capacity.
value[i]/weight[i] is the value per unit of weight of item i.
capacity is the maximum weight.
weight must be a list of integers.
value must be a list of integers.
capacity must be an int.
"""
index = list(range(len(value)))
# get value per unit weight in list
ratio = [v/w for v, w in zip(value, weight)]
# index is sorted according to value per unit weight in decreasing order
index.sort(key=lambda i: ratio[i], reverse=True)
max_value = 0
fractions = [0]*len(value)
for i in index:
if weight[i] <= capacity:
fractions[i] = 1
max_value += value[i]
capacity -= weight[i]
else:
fractions[i] = capacity/weight[i]
max_value += value[i]*capacity/weight[i]
break
return max_value, fractions
请问是否还有其他问题需要回答呢?
01背包问题 python代码
01背包问题是一个经典的动态规划问题。给定一组物品,每个物品有一个重量和一个价值,在限定的总重量内,如何选择物品使得总价值最大。
以下是一个Python实现的01背包问题的代码示例:
```python
def knapsack(weights, values, capacity):
n = len(weights)
dp = [[0] * (capacity + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
for w in range(capacity + 1):
if weights[i - 1] <= w:
dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1])
else:
dp[i][w] = dp[i - 1][w]
return dp[n][capacity]
# 示例使用
weights = [2, 3, 4, 5]
values = [3, 4, 5, 6]
capacity = 5
print("最大价值:", knapsack(weights, values, capacity))
```
在这个代码中,我们使用了二维动态规划数组`dp`,其中`dp[i][w]`表示前`i`个物品在容量为`w`的情况下的最大价值。通过遍历每个物品和每个可能的重量,更新`dp`数组,最终得到最大价值。
阅读全文
相关推荐
![md](https://img-home.csdnimg.cn/images/20250102104920.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)