以下代码为什么不能生成热力图:import pandas as pd import seaborn as sns import numpy as np titanic_df = pd.read_csv( "C:\\Users\\Lucky Week\\Documents\\WeChat Files\\wxid_jjvhmzk4khs412\\FileStorage\\File\\2023-05\\titanic\\train.csv") # 删除不必要的列 titanic_df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True) # 删除缺失值 titanic_df.dropna(inplace=True) # 将性别变量转换为数值变量 titanic_df['Sex'] = titanic_df['Sex'].replace({'male': 0, 'female': 1}) # 将登船港口变量转换为数值变量 titanic_df['Embarked'] = titanic_df['Embarked'].replace({'C': 0, 'Q': 1, 'S': 2}) grouped = titanic_df.groupby('Pclass') # 求每个船票等级的平均年龄 grouped['Age'].mean() # 将数据集按照性别和船票等级进行透视 pivot_df = pd.pivot_table(titanic_df, values='Survived', index='Sex', columns='Pclass') print(pivot_df.head()) sns.heatmap(data=pivot_df.head())
时间: 2023-08-08 19:07:19 浏览: 243
这段代码可能无法生成热力图的原因可能是由于 `pivot_df.head()` 返回的数据框中包含了缺失值,而 `seaborn.heatmap()` 函数默认不会显示缺失值所在的单元格,导致生成的热力图不完整。你可以尝试将缺失值填充为 0 或其他数值,或者将 `seaborn.heatmap()` 函数的 `annot` 参数设置为 `True`,这样可以在热力图上显示每个单元格的数值,并且缺失值将被显示为空白单元格。修改后的代码如下:
```
import pandas as pd
import seaborn as sns
import numpy as np
titanic_df = pd.read_csv("C:\\Users\\Lucky Week\\Documents\\WeChat Files\\wxid_jjvhmzk4khs412\\FileStorage\\File\\2023-05\\titanic\\train.csv")
# 删除不必要的列
titanic_df.drop(['PassengerId', 'Name', 'Ticket', 'Cabin'], axis=1, inplace=True)
# 删除缺失值
titanic_df.dropna(inplace=True)
# 将性别变量转换为数值变量
titanic_df['Sex'] = titanic_df['Sex'].replace({'male': 0, 'female': 1})
# 将登船港口变量转换为数值变量
titanic_df['Embarked'] = titanic_df['Embarked'].replace({'C': 0, 'Q': 1, 'S': 2})
grouped = titanic_df.groupby('Pclass')
# 求每个船票等级的平均年龄
grouped['Age'].mean()
# 将数据集按照性别和船票等级进行透视
pivot_df = pd.pivot_table(titanic_df, values='Survived', index='Sex', columns='Pclass')
# 将缺失值填充为 0
pivot_df.fillna(0, inplace=True)
# 使用 seaborn.heatmap 函数绘制热力图,并显示每个单元格的数值
sns.heatmap(data=pivot_df.head(), annot=True)
```
这样修改后的代码应该可以成功生成热力图。